30
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found

      Acid-shock of Campylobacter jejuni induces flagellar gene expression and host cell invasion.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bacterial pathogen Campylobacter jejuni is the leading cause of foodborne gastroenteritis in the developed world, with the organism being transmitted by ingestion of contaminated and undercooked poultry. Exposure to acid is an inevitable stressor for C. jejuni during gastric passage, yet the effect of low pH on C. jejuni virulence is still poorly understood. Here, we investigate the effect of acid-shock on C. jejuni viability, gene expression and host-cell invasion. C. jejuni strain NCTC 11168 survived acid exposure at pH 3.5 and above for up to 30 min without a drop in viability, and this exposure induced the expression of flagellar genes transcribed from σ(54)-dependent promoters. Furthermore, acid-shock resulted in increased C. jejuni invasion of m-ICcl2 mouse small intestine crypt cells grown on transwells, but not when the cells were grown on flat-bottomed wells. This suggests that C. jejuni might be invading intestinal epithelial cells at the basolateral side, possibly after paracellular passage. We hypothesize that acid-shock prior to intestinal entry may serve as a signal that primes C. jejuni to express its virulence gene repertoire including flagellar motility genes, but this requires further study in the context of an appropriate colonization or disease model.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences.

          Campylobacter jejuni, from the delta-epsilon group of proteobacteria, is a microaerophilic, Gram-negative, flagellate, spiral bacterium-properties it shares with the related gastric pathogen Helicobacter pylori. It is the leading cause of bacterial food-borne diarrhoeal disease throughout the world. In addition, infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain-Barré syndrome. Here we report the genome sequence of C. jejuni NCTC11168. C. jejuni has a circular chromosome of 1,641,481 base pairs (30.6% G+C) which is predicted to encode 1,654 proteins and 54 stable RNA species. The genome is unusual in that there are virtually no insertion sequences or phage-associated sequences and very few repeat sequences. One of the most striking findings in the genome was the presence of hypervariable sequences. These short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function. The apparently high rate of variation of these homopolymeric tracts may be important in the survival strategy of C. jejuni.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Campylobacter jejuni: molecular biology and pathogenesis.

            Campylobacter jejuni is a foodborne bacterial pathogen that is common in the developed world. However, we know less about its biology and pathogenicity than we do about other less prevalent pathogens. Interest in C. jejuni has increased in recent years as a result of the growing appreciation of its importance as a pathogen and the availability of new model systems and genetic and genomic technologies. C. jejuni establishes persistent, benign infections in chickens and is rapidly cleared by many strains of laboratory mouse, but causes significant inflammation and enteritis in humans. Comparing the different host responses to C. jejuni colonization should increase our understanding of this organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The clinical importance of emerging Campylobacter species.

              A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
                Bookmark

                Author and article information

                Journal
                Eur J Microbiol Immunol (Bp)
                European journal of microbiology & immunology
                Akademiai Kiado Zrt.
                2062-509X
                2062-509X
                Mar 2012
                : 2
                : 1
                Article
                EuJMI_2(2012)1/3
                10.1556/EuJMI.2.2012.1.3
                3933985
                24611116
                0af581d3-75cb-4456-82a6-f4a72e1d26ad
                History

                acid resistance,Campylobacter,motility,invasion
                acid resistance, Campylobacter, motility, invasion

                Comments

                Comment on this article