28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing evidence has revealed that microRNAs (miRNA) played a pivotal role in regulating cancer cell proliferation and metastasis. The deregulation of miR-182 has been identified in colorectal cancer (CRC). However, the role and mechanism of miR-182 in CRC have not been completely understood yet.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Colorectal cancer.

          Every year, more than 945000 people develop colorectal cancer worldwide, and around 492000 patients die. This form of cancer develops sporadically, in the setting of hereditary cancer syndromes, or on the basis of inflammatory bowel diseases. Screening and prevention programmes are available for all these causes and should be more widely publicised. The adenoma-carcinoma sequence is the basis for development of colorectal cancer, and the underlying molecular changes have largely been identified. Prognosis depends on factors related to the patient, treatment, and tumour, and the expertise of the treatment team is one of the major determinants of outcome. New information on the molecular basis of this cancer have led to the development of targeted therapeutic options, which are being tested in clinical trials. Further clinical progress will largely depend on the broader implementation of multidisciplinary treatment strategies following the principles of evidence-based medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs and cancer: short RNAs go a long way.

            MicroRNAs (miRNAs) may be important regulators of gene expression. By modulating oncogenic and tumor suppressor pathways they could, in principle, contribute to tumorigenesis. Consistent with this hypothesis, recurrent genetic and epigenetic alterations of individual miRNAs are found in some tumors. Functional studies are now elucidating the mechanism of action of putative oncogenic and tumor suppressor miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster.

              Although microRNAs (miRNAs) provide a newly recognized level of regulation of gene expression, the miRNA transcriptome of the retina and the contributions of miRNAs to retinal development and function are largely unknown. To begin to understand the functions of miRNAs in retina, we compared miRNA expression profiles in adult mouse retina, brain, and heart by microarray analysis. Our results show that at least 78 miRNAs are expressed in adult mouse retina, 21 of which are potentially retina-specific. Among these, we identified a polycistronic, sensory organ-specific paralogous miRNA cluster that includes miR-96, miR-182, and miR-183 on mouse chromosome 6qA3 with conservation of synteny to human chromosome 7q32.2. In situ hybridization showed that members of this cluster are expressed in photoreceptors, retinal bipolar and amacrine cells. Consistent with their genomic organization, these miRNAs have a similar expression pattern during development with abundance increasing postnatally and peaking in adult retina. Target prediction and in vitro functional studies showed that MITF, a transcription factor required for the establishment and maintenance of retinal pigmented epithelium, is a direct target of miR-96 and miR-182. Additionally, to identify miRNAs potentially involved in circadian rhythm regulation of the retina, we performed miRNA expression profiling with retinal RNA harvested at noon (Zeitgeber time 5) and midnight (Zeitgeber time 17) and identified a subgroup of 12 miRNAs, including members of the miR-183/96/182 cluster with diurnal variation in expression pattern. Our results suggest that miR-96 and miR-182 are involved in circadian rhythm regulation, perhaps by modulating the expression of adenylyl cyclase VI (ADCY6).
                Bookmark

                Author and article information

                Journal
                J Transl Med
                Journal of translational medicine
                Springer Science and Business Media LLC
                1479-5876
                1479-5876
                May 01 2014
                : 12
                Affiliations
                [1 ] Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China. shuangw@126.com.
                Article
                1479-5876-12-109
                10.1186/1479-5876-12-109
                4020308
                24884732
                c73b23ba-e64f-41fb-ba58-a873eb72bb09
                History

                Comments

                Comment on this article