20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autoimmune Thyroid Disorders

      review-article
      1 , 2 , * , 3
      ISRN Endocrinology
      Hindawi Publishing Corporation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose of Review. Studies have been published in the field of autoimmune thyroid diseases since January 2005. The review is organized into areas of etiology, autoimmune features, autoantibodies, mechanism of thyroid cell injury, B-cell responses, and T-cell responses. Also it reviews the diagnosis and the relationship between autoimmune thyroid disease, neoplasm, and kidney disorders. Recent Findings. Autoimmune thyroid diseases have been reported in people living in different parts of the world including North America, Europe, Baalkans, Asia, Middle East, South America, and Africa though the reported figures do not fully reflect the number of people infected per year. Cases are unrecognized due to inaccurate diagnosis and hence are treated as other diseases. However, the most recent studies have shown that the human autoimmune thyroid diseases (AITDs) affect up to 5% of the general population and are seen mostly in women between 30 and 50 years. Summary. Autoimmune thyroid disease is the result of a complex interaction between genetic and environmental factors. Overall, this review has expanded our understanding of the mechanism involved in pathogenesis of AITD and the relationship between autoimmune thyroid disease, neoplasm, and kidney disease. It has opened new lines of investigations that will ultimately result in a better clinical practice.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: not found
          • Article: not found

          Antithyroid drugs.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Colorado thyroid disease prevalence study.

            The prevalence of abnormal thyroid function in the United States and the significance of thyroid dysfunction remain controversial. Systemic effects of abnormal thyroid function have not been fully delineated, particularly in cases of mild thyroid failure. Also, the relationship between traditional hypothyroid symptoms and biochemical thyroid function is unclear. To determine the prevalence of abnormal thyroid function and the relationship between (1) abnormal thyroid function and lipid levels and (2) abnormal thyroid function and symptoms using modern and sensitive thyroid tests. Cross-sectional study. Participants in a statewide health fair in Colorado, 1995 (N = 25 862). Serum thyrotropin (thyroid-stimulating hormone [TSH]) and total thyroxine (T4) concentrations, serum lipid levels, and responses to a hypothyroid symptoms questionnaire. The prevalence of elevated TSH levels (normal range, 0.3-5.1 mIU/L) in this population was 9.5%, and the prevalence of decreased TSH levels was 2.2%. Forty percent of patients taking thyroid medications had abnormal TSH levels. Lipid levels increased in a graded fashion as thyroid function declined. Also, the mean total cholesterol and low-density lipoprotein cholesterol levels of subjects with TSH values between 5.1 and 10 mIU/L were significantly greater than the corresponding mean lipid levels in euthyroid subjects. Symptoms were reported more often in hypothyroid vs euthyroid individuals, but individual symptom sensitivities were low. The prevalence of abnormal biochemical thyroid function reported here is substantial and confirms previous reports in smaller populations. Among patients taking thyroid medication, only 60% were within the normal range of TSH. Modest elevations of TSH corresponded to changes in lipid levels that may affect cardiovascular health. Individual symptoms were not very sensitive, but patients who report multiple thyroid symptoms warrant serum thyroid testing. These results confirm that thyroid dysfunction is common, may often go undetected, and may be associated with adverse health outcomes that can be avoided by serum TSH measurement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey.

              The original Whickham Survey documented the prevalence of thyroid disorders in a randomly selected sample of 2779 adults which matched the population of Great Britain in age, sex and social class. The aim of the twenty-year follow-up survey was to determine the incidence and natural history of thyroid disease in this cohort. Subjects were traced at follow-up via the Electoral Register, General Practice registers, Gateshead Family Health Services Authority register and Office of Population Censuses and Surveys. Eight hundred and twenty-five subjects (30% of the sample) had died and, in addition to death certificates, two-thirds had information from either hospital/General Practitioner notes or post-mortem reports to document morbidity prior to death. Of the 1877 known survivors, 96% participated in the follow-up study and 91% were tested for clinical, biochemical and immunological evidence of thyroid dysfunction. Outcomes in terms of morbidity and mortality were determined for over 97% of the original sample. The mean incidence (with 95% confidence intervals) of spontaneous hypothyroidism in women was 3.5/1000 survivors/year (2.8-4.5) rising to 4.1/1000 survivors/year (3.3-5.0) for all causes of hypothyroidism and in men was 0.6/1000 survivors/year (0.3-1.2). The mean incidence of hyperthyroidism in women was 0.8/1000 survivors/year (0.5-1.4) and was negligible in men. Similar incidence rates were calculated for the deceased subjects. An estimate of the probability of the development of hypothyroidism and hyperthyroidism at a particular time, i.e. the hazard rate, showed an increase with age in hypothyroidism but no age relation in hyperthyroidism. The frequency of goitre decreased with age with 10% of women and 2% of men having a goitre at follow-up, as compared to 23% and 5% in the same subjects respectively at the first survey. The presence of a goitre at either survey was not associated with any clinical or biochemical evidence of thyroid dysfunction. In women, an association was found between the development of a goitre and thyroid-antibody status at follow-up, but not initially. The risk of having developed hypothyroidism at follow-up was examined with respect to risk factors identified at first survey. The odds ratios (with 95% confidence intervals) of developing hypothyroidism with (a) raised serum TSH alone were 8 (3-20) for women and 44 (19-104) for men; (b) positive anti-thyroid antibodies alone were 8 (5-15) for women and 25 (10-63) for men; (c) both raised serum TSH and positive anti-thyroid antibodies were 38 (22-65) for women and 173 (81-370) for men. A logit model indicated that increasing values of serum TSH above 2mU/l at first survey increased the probability of developing hypothyroidism which was further increased in the presence of anti-thyroid antibodies. Neither a positive family history of any form of thyroid disease nor parity of women at first survey was associated with increased risk of developing hypothyroidism. Fasting cholesterol and triglyceride levels at first survey when corrected for age showed no association with the development of hypothyroidism in women. This historical cohort study has provided incidence data for thyroid disease over a twenty-year period for a representative cross-sectional sample of the population, and has allowed the determination of the importance of prognostic risk factors for thyroid disease identified twenty years earlier.
                Bookmark

                Author and article information

                Journal
                ISRN Endocrinol
                ISRN Endocrinol
                ISRN.ENDOCRINOLOGY
                ISRN Endocrinology
                Hindawi Publishing Corporation
                2090-4630
                2090-4649
                2013
                26 June 2013
                : 2013
                : 509764
                Affiliations
                1Department of Biomedical Science and Technology, Maseno University, P.O. Box 333-40105, Maseno, Kenya
                2Department of Medical Laboratory, Moi Teaching and Referral Hospital, P.O. Box 3-30100, Eldoret, Kenya
                3Department of Human Pathology, School of Medicine, Moi University, P.O. Box 4606-30100, Eldoret, Kenya
                Author notes

                Academic Editors: J.-F. Hu and D. F. Skafar

                Article
                10.1155/2013/509764
                3710642
                23878745
                971913b5-9926-42e6-9ca4-da1884cacad1
                Copyright © 2013 M. A. Iddah and B. N. Macharia.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 May 2013
                : 4 June 2013
                Categories
                Review Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article