7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Dental Microwear Texture Analysis of the Mio-Pliocene Hyaenids from Langebaanweg, South Africa

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Global vegetation change through the Miocene/Pliocene boundary

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dental microwear texture analysis shows within-species diet variability in fossil hominins.

            Reconstructing the diets of extinct hominins is essential to understanding the paleobiology and evolutionary history of our lineage. Dental microwear, the study of microscopic tooth-wear resulting from use, provides direct evidence of what an individual ate in the past. Unfortunately, established methods of studying microwear are plagued with low repeatability and high observer error. Here we apply an objective, repeatable approach for studying three-dimensional microwear surface texture to extinct South African hominins. Scanning confocal microscopy together with scale-sensitive fractal analysis are used to characterize the complexity and anisotropy of microwear. Results for living primates show that this approach can distinguish among diets characterized by different fracture properties. When applied to hominins, microwear texture analysis indicates that Australopithecus africanus microwear is more anisotropic, but also more variable in anisotropy than Paranthropus robustus. This latter species has more complex microwear textures, but is also more variable in complexity than A. africanus. This suggests that A. africanus ate more tough foods and P. robustus consumed more hard and brittle items, but that both had variable and overlapping diets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deja vu: the evolution of feeding morphologies in the Carnivora.

              The fossil record of the order Carnivora extends back at least 60 million years and documents a remarkable history of adaptive radiation characterized by the repeated, independent evolution of similar feeding morphologies in distinct clades. Within the order, convergence is apparent in the iterative appearance of a variety of ecomorphs, including cat-like, hyena-like, and wolf-like hypercarnivores, as well as a variety of less carnivorous forms, such as foxes, raccoons, and ursids. The iteration of similar forms has multiple causes. First, there are a limited number of ways to ecologically partition the carnivore niche, and second, the material properties of animal tissues (muscle, skin, bone) have not changed over the Cenozoic. Consequently, similar craniodental adaptations for feeding on different proportions of animal versus plant tissues evolve repeatedly. The extent of convergence in craniodental form can be striking, affecting skull proportions and overall shape, as well as dental morphology. The tendency to evolve highly convergent ecomorphs is most apparent among feeding extremes, such as sabertooths and bone-crackers where performance requirements tend to be more acute. A survey of the fossil record indicates that large hypercarnivores evolve frequently, often in response to ecological opportunity afforded by the decline or extinction of previously dominant hypercarnivorous taxa. While the evolution of large size and carnivory may be favored at the individual level, it can lead to a macroevolutionary ratchet, wherein dietary specialization and reduced population densities result in a greater vulnerability to extinction. As a result of these opposing forces, the fossil record of Carnivora is dominated by successive clades of hypercarnivores that diversify and decline, only to be replaced by new hypercarnivorous clades. This has produced a marvelous set of natural experiments in the evolution of similar ecomorphs, each of which start from phylogenetically and morphologically unique positions.
                Bookmark

                Author and article information

                Journal
                Acta Palaeontologica Polonica
                Acta Palaeontologica Polonica
                Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences)
                0567-7920
                September 2012
                September 2012
                : 57
                : 3
                : 485-496
                Article
                10.4202/app.2011.0053
                a55a8832-96ee-4250-adaf-33c06b1686ab
                © 2012
                History

                Comments

                Comment on this article