12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Vimentin as a Potential Therapeutic Target against HIV Infection

      Viruses
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

          Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global report: UNAIDS report on the global AIDS epidemic 2012

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The function of intermediate filaments in cell shape and cytoskeletal integrity

              This study describes the development and use of a specific method for disassembling intermediate filament (IF) networks in living cells. It takes advantage of the disruptive effects of mimetic peptides derived from the amino acid sequence of the helix initiation 1A domain of IF protein chains. The results demonstrate that at 1:1 molar ratios, these peptides disassemble vimentin IF into small oligomeric complexes and monomers within 30 min at room temperature in vitro. Upon microinjection into cultured fibroblasts, these same peptides induce the rapid disassembly of IF networks. The disassembly process is accompanied by a dramatic alteration in cell shape and the destabilization of microtubule and actin-stress fiber networks. These changes in cell shape and IF assembly states are reversible. The results are discussed with respect to the roles of IF in cell shape and the maintenance of the integrity and mechanical properties of the cytoplasm, as well as the stability of the other major cytoskeletal systems.
                Bookmark

                Author and article information

                Journal
                10.3390/v8060098
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article