21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic landscape of high-grade meningiomas

      NPJ genomic medicine
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.

          In this paper we describe an improved neural network method to predict T-cell class I epitopes. A novel input representation has been developed consisting of a combination of sparse encoding, Blosum encoding, and input derived from hidden Markov models. We demonstrate that the combination of several neural networks derived using different sequence-encoding schemes has a performance superior to neural networks derived using a single sequence-encoding scheme. The new method is shown to have a performance that is substantially higher than that of other methods. By use of mutual information calculations we show that peptides that bind to the HLA A*0204 complex display signal of higher order sequence correlations. Neural networks are ideally suited to integrate such higher order correlations when predicting the binding affinity. It is this feature combined with the use of several neural networks derived from different and novel sequence-encoding schemes and the ability of the neural network to be trained on data consisting of continuous binding affinities that gives the new method an improved performance. The difference in predictive performance between the neural network methods and that of the matrix-driven methods is found to be most significant for peptides that bind strongly to the HLA molecule, confirming that the signal of higher order sequence correlation is most strongly present in high-binding peptides. Finally, we use the method to predict T-cell epitopes for the genome of hepatitis C virus and discuss possible applications of the prediction method to guide the process of rational vaccine design.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient de novo assembly of large genomes using compressed data structures.

            De novo genome sequence assembly is important both to generate new sequence assemblies for previously uncharacterized genomes and to identify the genome sequence of individuals in a reference-unbiased way. We present memory efficient data structures and algorithms for assembly using the FM-index derived from the compressed Burrows-Wheeler transform, and a new assembler based on these called SGA (String Graph Assembler). We describe algorithms to error-correct, assemble, and scaffold large sets of sequence data. SGA uses the overlap-based string graph model of assembly, unlike most de novo assemblers that rely on de Bruijn graphs, and is simply parallelizable. We demonstrate the error correction and assembly performance of SGA on 1.2 billion sequence reads from a human genome, which we are able to assemble using 54 GB of memory. The resulting contigs are highly accurate and contiguous, while covering 95% of the reference genome (excluding contigs <200 bp in length). Because of the low memory requirements and parallelization without requiring inter-process communication, SGA provides the first practical assembler to our knowledge for a mammalian-sized genome on a low-end computing cluster.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO.

              We report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics.
                Bookmark

                Author and article information

                Journal
                10.1038/s41525-017-0014-7

                Comments

                Comment on this article