27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A remarkable new species of the millipede genus Trachyjulus Peters, 1864 (Diplopoda, Spirostreptida, Cambalopsidae) from Thailand, based both on morphological and molecular evidence

      , , , , ,
      ZooKeys
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new, giant species of Trachyjulus from a cave in southern Thailand is described, illustrated, and compared to morphologically closely related taxa. This new species, T. magnus sp. nov., is much larger than all other congeners and looks especially similar to the grossly sympatric T. unciger Golovatch, Geoffroy, Mauriès & VandenSpiegel, 2012, which is widespread in southern Thailand. Phylogenetic trees, both rooted and unrooted, based on a concatenated dataset of the COI and 28S genes of nine species of Cambalopsidae (Trachyjulus, Glyphiulus, and Plusioglyphiulus), strongly support the monophyly of Trachyjulus and a clear-cut divergence between T. magnus sp. nov. and T. unciger in revealing very high average p-distances of the COI gene (20.80–23.62%).

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Why highly expressed proteins evolve slowly

          Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons that have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expression's dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions and can explain why highly expressed proteins evolve slowly across the tree of life.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Anamorphosis in millipedes (Diplopoda)-the present state of knowledge with some developmental and phylogenetic considerations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences.

              The Mollusca represent one of the most morphologically diverse animal phyla, prompting a variety of hypotheses on relationships between the major lineages within the phylum based upon morphological, developmental, and paleontological data. Analyses of small-ribosomal RNA (SSU rRNA) gene sequence have provided limited resolution of higher-level relationships within the Mollusca. Recent analyses suggest large-subunit (LSU) rRNA gene sequences are useful in resolving deep-level metazoan relationships, particularly when combined with SSU sequence. To this end, LSU (approximately 3.5 kb in length) and SSU (approximately 2 kb) sequences were collected for 33 taxa representing the major lineages within the Mollusca to improve resolution of intraphyletic relationships. Although the LSU and combined LSU+SSU datasets appear to hold potential for resolving branching order within the recognized molluscan classes, low bootstrap support was found for relationships between the major lineages within the Mollusca. LSU+SSU sequences also showed significant levels of rate heterogeneity between molluscan lineages. The Polyplacophora, Gastropoda, and Cephalopoda were each recovered as monophyletic clades with the LSU+SSU dataset. While the Bivalvia were not recovered as monophyletic clade in analyses of the SSU, LSU, or LSU+SSU, the Shimodaira-Hasegawa test showed that likelihood scores for these results did not differ significantly from topologies where the Bivalvia were monophyletic. Analyses of LSU sequences strongly contradict the widely accepted Diasoma hypotheses that bivalves and scaphopods are closely related to one another. The data are consistent with recent morphological and SSU analyses suggesting scaphopods are more closely related to gastropods and cephalopods than to bivalves. The dataset also presents the first published DNA sequences from a neomeniomorph aplacophoran, a group considered critical to our understanding of the origin and early radiation of the Mollusca. Copyright 2004 Elsevier Inc.
                Bookmark

                Author and article information

                Journal
                ZooKeys
                ZK
                Pensoft Publishers
                1313-2970
                1313-2989
                April 08 2020
                April 08 2020
                : 925
                : 55-72
                Article
                10.3897/zookeys.925.49953
                71a761c9-873b-42fb-9a22-a1ce41222fc3
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content247

                Cited by6

                Most referenced authors877