19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      "We do not bury dead livestock like human beings": Community behaviors and risk of Rift Valley Fever virus infection in Baringo County, Kenya.

      PLoS Neglected Tropical Diseases
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rift Valley Fever (RVF), is a viral zoonotic disease transmitted by Aedes and Culex mosquitoes. In Kenya, its occurrence is associated with increased rains. In Baringo County, RVF was first reported in 2006 resulting in 85 human cases and 5 human deaths, besides livestock losses and livelihood disruptions. This study sought to investigate the county's current RVF risk status.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya.

          All known Rift Valley fever virus outbreaks in East Africa from 1950 to May 1998, and probably earlier, followed periods of abnormally high rainfall. Analysis of this record and Pacific and Indian Ocean sea surface temperature anomalies, coupled with satellite normalized difference vegetation index data, shows that prediction of Rift Valley fever outbreaks may be made up to 5 months in advance of outbreaks in East Africa. Concurrent near-real-time monitoring with satellite normalized difference vegetation data may identify actual affected areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Outbreak of Rift Valley Fever in Northeastern Kenya, 1997-98

            In December 1997, 170 hemorrhagic fever-associated deaths were reported in Carissa District, Kenya. Laboratory testing identified evidence of acute Rift Valley fever virus (RVFV). Of the 171 persons enrolled in a cross-sectional study, 31(18%) were anti-RVFV immunoglobulin (Ig) M positive. An age-adjusted IgM antibody prevalence of 14% was estimated for the district. We estimate approximately 27,500 infections occurred in Garissa District, making this the largest recorded outbreak of RVFV in East Africa. In multivariate analysis, contact with sheep body fluids and sheltering livestock in one’s home were significantly associated with infection. Direct contact with animals, particularly contact with sheep body fluids, was the most important modifiable risk factor for RVFV infection. Public education during epizootics may reduce human illness and deaths associated with future outbreaks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rift Valley fever virus epidemic in Kenya, 2006/2007: the entomologic investigations.

              In December 2006, Rift Valley fever (RVF) was diagnosed in humans in Garissa Hospital, Kenya and an outbreak reported affecting 11 districts. Entomologic surveillance was performed in four districts to determine the epidemic/epizootic vectors of RVF virus (RVFV). Approximately 297,000 mosquitoes were collected, 164,626 identified to species, 72,058 sorted into 3,003 pools and tested for RVFV by reverse transcription-polymerase chain reaction. Seventy-seven pools representing 10 species tested positive for RVFV, including Aedes mcintoshi/circumluteolus (26 pools), Aedes ochraceus (23 pools), Mansonia uniformis (15 pools); Culex poicilipes, Culex bitaeniorhynchus (3 pools each); Anopheles squamosus, Mansonia africana (2 pools each); Culex quinquefasciatus, Culex univittatus, Aedes pembaensis (1 pool each). Positive Ae. pembaensis, Cx. univittatus, and Cx. bitaeniorhynchus was a first time observation. Species composition, densities, and infection varied among districts supporting hypothesis that different mosquito species serve as epizootic/epidemic vectors of RVFV in diverse ecologies, creating a complex epidemiologic pattern in East Africa.
                Bookmark

                Author and article information

                Journal
                28542242
                10.1371/journal.pntd.0005582

                Comments

                Comment on this article