45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methane is formed by methanogenic archaea in the rumen as one of the end products of feed fermentation in the ruminant digestive tract. To develop strategies to mitigate anthropogenic methane emissions due to ruminant farming, and to understand rumen microbial differences in animal feed conversion efficiency, it is essential that methanogens can be identified and taxonomically classified with high accuracy. Currently available taxonomic frameworks offer only limited resolution beyond the genus level for taxonomic assignments of sequence data stemming from high throughput sequencing technologies. Therefore, we have developed a QIIME-compatible database (DB) designed for species-level taxonomic assignment of 16S rRNA gene amplicon data targeting methanogenic archaea from the rumen, and from animal and human intestinal tracts. Called RIM-DB (Rumen and Intestinal Methanogen-DB), it contains a set of 2,379 almost full-length chimera-checked 16S rRNA gene sequences, including 20 previously unpublished sequences from isolates from three different orders. The taxonomy encompasses the recently-proposed seventh order of methanogens, the Methanomassiliicoccales, and allows differentiation between defined groups within this order. Sequence reads from rumen contents from a range of ruminant-diet combinations were taxonomically assigned using RIM-DB, Greengenes and SILVA. This comparison clearly showed that taxonomic assignments with RIM-DB resulted in the most detailed assignment, and only RIM-DB taxonomic assignments allowed methanogens to be distinguished taxonomically at the species level. RIM-DB complements the use of comprehensive databases such as Greengenes and SILVA for community structure analysis of methanogens from the rumen and other intestinal environments, and allows identification of target species for methane mitigation strategies.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          R: A Language and environmental for statistical computing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Symbiotic digestion of lignocellulose in termite guts.

            Their ability to degrade lignocellulose gives termites an important place in the carbon cycle. This ability relies on their partnership with a diverse community of bacterial, archaeal and eukaryotic gut symbionts, which break down the plant fibre and ferment the products to acetate and variable amounts of methane, with hydrogen as a central intermediate. In addition, termites rely on the biosynthetic capacities of their gut microbiota as a nutritional resource. The mineralization of humus components in the guts of soil-feeding species also contributes to nitrogen cycling in tropical soils. Lastly, the high efficiency of their minute intestinal bioreactors makes termites promising models for the industrial conversion of lignocellulose into microbial products and the production of biofuels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution

              We developed a fast method for denoising pyrosequencing for community 16S rRNA analysis. We observe a 2–4 fold reduction in the number of observed OTUs (operational taxonomic units) comparing denoised with non-denoised data. ~50,000 sequences can be denoised on a laptop within an hour, two orders of magnitude faster than published techniques. We demonstrate the effects of denoising on alpha and beta diversity of large 16S rRNA datasets.
                Bookmark

                Author and article information

                Journal
                PeerJ
                PeerJ
                PeerJ
                2167-8359
                2167-8359
                2014
                : 2
                Affiliations
                [1 ] AgResearch, Grasslands Research Centre , Palmerston North , New Zealand.
                Article
                494
                10.7717/peerj.494
                4137658
                25165621
                4085466e-8477-45db-88c0-0e40603b8dd6
                History

                Reference database,Taxonomy,Intestinal microbiota,Archaea,Methanogen,Rumen

                Comments

                Comment on this article