902
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms pertaining to arsenic toxicity.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arsenic is an environmental pollutant and its contamination in the drinking water is considered as a serious worldwide environmental health threat. The chronic arsenic exposure is a cause of immense health distress as it accounts for the increased risk of various disorders such as cardiovascular abnormalities, diabetes mellitus, neurotoxicity, and nephrotoxicity. In addition, the exposure to arsenic has been suggested to affect the liver function and to induce hepatotoxicity. Moreover, few studies demonstrated the induction of carcinogenicity especially cancer of the skin, bladder, and lungs after the chronic exposure to arsenic. The present review addresses diverse mechanisms involved in the pathogenesis of arsenic-induced toxicity and end-organ damage.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Arsenic in the aetiology of cancer.

          Arsenic, one of the most significant hazards in the environment affecting millions of people around the world, is associated with several diseases including cancers of skin, lung, urinary bladder, kidney and liver. Groundwater contamination by arsenic is the main route of exposure. Inhalation of airborne arsenic or arsenic-contaminated dust is a common health problem in many ore mines. This review deals with the questions raised in the epidemiological studies such as the dose-response relationship, putative confounders and synergistic effects, and methods evaluating arsenic exposure. Furthermore, it describes the metabolic pathways of arsenic, and its biological modes of action. The role of arsenic in the development of cancer is elucidated in the context of combined epidemiological and biological studies. However, further analyses by means of molecular epidemiology are needed to improve the understanding of cancer aetiology induced by arsenic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential biological mechanisms of arsenic-induced diabetes mellitus.

            Although epidemiologic studies carried out in Taiwan, Bangladesh, and Sweden have demonstrated a diabetogenic effect of arsenic, the mechanisms remain unclear and require further investigation. This paper reviewed the potential biological mechanisms of arsenic-induced diabetes mellitus based on the current knowledge of the biochemical properties of arsenic. Arsenate can substitute phosphate in the formation of adenosine triphosphate (ATP) and other phosphate intermediates involved in glucose metabolism, which could theoretically slow down the normal metabolism of glucose, interrupt the production of energy, and interfere with the ATP-dependent insulin secretion. However, the concentration of arsenate required for such reaction is high and not physiologically relevant, and these effects may only happen in acute intoxication and may not be effective in subjects chronically exposed to low-dose arsenic. On the other hand, arsenite has high affinity for sulfhydryl groups and thus can form covalent bonds with the disulfide bridges in the molecules of insulin, insulin receptors, glucose transporters (GLUTs), and enzymes involved in glucose metabolism (e.g., pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase). As a result, the normal functions of these molecules can be hampered. However, a direct effect on these molecules caused by arsenite at physiologically relevant concentrations seems unlikely. Recent evidence has shown that treatment of arsenite at lower and physiologically relevant concentrations can stimulate glucose transport, in contrary to an inhibitory effect exerted by phenylarsine oxide (PAO) or by higher doses of arsenite. Induction of oxidative stress and interferences in signal transduction or gene expression by arsenic or by its methylated metabolites are the most possible causes to arsenic-induced diabetes mellitus through mechanisms of induction of insulin resistance and beta cell dysfunction. Recent studies have shown that, in subjects with chronic arsenic exposure, oxidative stress is increased and the expression of tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) is upregulated. Both of these two cytokines have been well known for their effect on the induction of insulin resistance. Arsenite at physiologically relevant concentration also shows inhibitory effect on the expression of peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor important for activating insulin action. Oxidative stress has been suggested as a major pathogenic link to both insulin resistance and beta cell dysfunction through mechanisms involving activation of nuclear factor-kappaB (NF-kappaB), which is also activated by low levels of arsenic. Although without supportive data, superoxide production induced by arsenic exposure can theoretically impair insulin secretion by interaction with uncoupling protein 2 (UCP2), and oxidative stress can also cause amyloid formation in the pancreas, which could progressively destroy the insulin-secreting beta cells. Individual susceptibility with respect to genetics, nutritional status, health status, detoxification capability, interactions with other trace elements, and the existence of other well-recognized risk factors of diabetes mellitus can influence the toxicity of arsenic on organs involved in glucose metabolism and determine the progression of insulin resistance and impaired insulin secretion to a status of persistent hyperglycemia or diabetes mellitus. In conclusions, insulin resistance and beta cell dysfunction can be induced by chronic arsenic exposure. These defects may be responsible for arsenic-induced diabetes mellitus, but investigations are required to test this hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh.

              The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (>300 microg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 microg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominantly at low-to-moderate levels (0.1 to 864 microg/L, mean 99 microg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.
                Bookmark

                Author and article information

                Journal
                Toxicol Int
                Toxicology international
                Medknow
                0976-5131
                0971-6580
                Jul 2011
                : 18
                : 2
                Affiliations
                [1 ] Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar - 143 005.
                Article
                TI-18-87
                10.4103/0971-6580.84258
                3183630
                21976811
                d4d5c41a-0687-4d16-8c21-563766e097f2
                History

                Arsenic,carcinogenicity,cardiovascular dysfunction,diabetes,hepatotoxicity,nephrotoxicity,neurotoxicity

                Comments

                Comment on this article