Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactive Molecule Prediction Using Extreme Gradient Boosting

      ,
      Molecules
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following the explosive growth in chemical and biological data, the shift from traditional methods of drug discovery to computer-aided means has made data mining and machine learning methods integral parts of today’s drug discovery process. In this paper, extreme gradient boosting (Xgboost), which is an ensemble of Classification and Regression Tree (CART) and a variant of the Gradient Boosting Machine, was investigated for the prediction of biological activity based on quantitative description of the compound’s molecular structure. Seven datasets, well known in the literature were used in this paper and experimental results show that Xgboost can outperform machine learning algorithms like Random Forest (RF), Support Vector Machines (LSVM), Radial Basis Function Neural Network (RBFN) and Naïve Bayes (NB) for the prediction of biological activities. In addition to its ability to detect minority activity classes in highly imbalanced datasets, it showed remarkable performance on both high and low diversity datasets.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Random forest: a classification and regression tool for compound classification and QSAR modeling.

          A new classification and regression tool, Random Forest, is introduced and investigated for predicting a compound's quantitative or categorical biological activity based on a quantitative description of the compound's molecular structure. Random Forest is an ensemble of unpruned classification or regression trees created by using bootstrap samples of the training data and random feature selection in tree induction. Prediction is made by aggregating (majority vote or averaging) the predictions of the ensemble. We built predictive models for six cheminformatics data sets. Our analysis demonstrates that Random Forest is a powerful tool capable of delivering performance that is among the most accurate methods to date. We also present three additional features of Random Forest: built-in performance assessment, a measure of relative importance of descriptors, and a measure of compound similarity that is weighted by the relative importance of descriptors. It is the combination of relatively high prediction accuracy and its collection of desired features that makes Random Forest uniquely suited for modeling in cheminformatics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Benchmarking sets for molecular docking.

            Ligand enrichment among top-ranking hits is a key metric of molecular docking. To avoid bias, decoys should resemble ligands physically, so that enrichment is not simply a separation of gross features, yet be chemically distinct from them, so that they are unlikely to be binders. We have assembled a directory of useful decoys (DUD), with 2950 ligands for 40 different targets. Every ligand has 36 decoy molecules that are physically similar but topologically distinct, leading to a database of 98,266 compounds. For most targets, enrichment was at least half a log better with uncorrected databases such as the MDDR than with DUD, evidence of bias in the former. These calculations also allowed 40x40 cross-docking, where the enrichments of each ligand set could be compared for all 40 targets, enabling a specificity metric for the docking screens. DUD is freely available online as a benchmarking set for docking at http://blaster.docking.org/dud/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              XGBoost: A Scalable Tree Boosting System

              Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
                Bookmark

                Author and article information

                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                August 2016
                July 28 2016
                : 21
                : 8
                : 983
                Article
                10.3390/molecules21080983
                1762c04e-91c1-4d74-9de1-00ed75ded853
                © 2016

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article