11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Deficiency of Inducible Nitric Oxide Synthase Protects Against MPTP Toxicity In Vivo

      Journal of Neurochemistry
      Wiley

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.

          MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking the iNOS gene were significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that iNOS is important in the MPTP neurotoxic process and indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure.

            This report provides the first detailed neuropathological study of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in humans. All 3 subjects self-administered the drug under the impression it was "synthetic heroin" and subsequently developed severe and unremitting parkinsonism, which was L-dopa responsive, at least in the earlier stages of illness. Survival times ranged from 3 to 16 years. Neuropathological examination revealed moderate to severe depletion of pigmented nerve cells in the substantia nigra in each case. Lewy bodies were not present. In Patients 1 and 2, there was gliosis and clustering of microglia around nerve cells. Patient 3 had a similar picture and also showed large amounts of extraneuronal melanin. These findings are indicative of active, ongoing nerve cell loss, suggesting that a time-limited insult to the nigrostriatal system can set in motion a self-perpetuating process of neurodegeneration. Although the mechanism by which this occurs is far from clear, the precedent set by the cases could have broad implications for human neurodegenerative disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia as mediators of inflammatory and degenerative diseases.

              Microglia are the principal immune cells in the central nervous system (CNS) and have a critical role in host defense against invading microorganisms and neoplastic cells. However, as with immune cells in other organs, microglia may play a dual role, amplifying the effects of inflammation and mediating cellular degeneration as well as protecting the CNS. In entities like human immunodeficiency virus (HIV) infection of the nervous system, microglia are also critical to viral persistence. In this review we discuss the role of microglia in three diseases in which their activity is at least partially deleterious: HIV, multiple sclerosis, and Alzheimer's disease.
                Bookmark

                Author and article information

                Journal
                10.1046/j.1471-4159.2000.0742213.x
                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article