162
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors

      Molecular Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

          Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cellular survival: a play in three Akts.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation.

              Growth factor induced activation of phosphoinositide 3-kinase and protein kinase B (PKB) leads to increased activity of the mammalian target of rapamycin (mTOR). This subsequently leads to increased phosphorylation of eIF4E binding protein-1 (4EBP1) and activation of p70 ribosomal S6 protein kinase (p70(S6K)), both of which are important steps in the stimulation of protein translation. The stimulation of translation is attenuated in cells deprived of amino acids and this is associated with the attenuation of 4EBP1 phosphorylation and p70(S6K) activation. It has been suggested that PKB regulates mTOR function by phosphorylation although direct phosphorylation of mTOR by PKB has not been demonstrated previously. In the present work, we have found that PKB directly phosphorylates mTOR and, using phosphospecific antibodies, we have shown this phosphorylation occurs at Ser(2448). Insulin also induces phosphorylation on Ser(2448) and this effect is blocked by wortmannin but not rapamycin, consistent with the effect being mediated by PKB. Amino-acid starvation rapidly attenuated the reactivity of the Ser(2448) phosphospecific antibody with mTOR and this could not be restored by either insulin stimulation of cells or incubation with PKB in vitro. Our findings demonstrate that mTOR is a direct target for PKB and support the conclusion that regulation of phosphorylation of Ser(2448) is a point of convergence for the counteracting regulatory effects of growth factors and amino acid levels.
                Bookmark

                Author and article information

                Journal
                10.1016/S1097-2765(04)00211-4
                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article