44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a "synthetic" state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span-and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.

          Related collections

          Most cited references423

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

          It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.

            Blood neutrophils provide the first line of defense against pathogens but have also been implicated in thrombotic processes. This dual function of neutrophils could reflect an evolutionarily conserved association between blood coagulation and antimicrobial defense, although the molecular determinants and in vivo significance of this association remain unclear. Here we show that major microbicidal effectors of neutrophils, the serine proteases neutrophil elastase and cathepsin G, together with externalized nucleosomes, promote coagulation and intravascular thrombus growth in vivo. The serine proteases and extracellular nucleosomes enhance tissue factor- and factor XII-dependent coagulation in a process involving local proteolysis of the coagulation suppressor tissue factor pathway inhibitor. During systemic infection, activation of coagulation fosters compartmentalization of bacteria in liver microvessels and reduces bacterial invasion into tissue. In the absence of a pathogen challenge, neutrophil-derived serine proteases and nucleosomes can contribute to large-vessel thrombosis, the main trigger of myocardial infarction and stroke. The ability of coagulation to suppress pathogen dissemination indicates that microvessel thrombosis represents a physiological tool of host defense.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lung is a site of platelet biogenesis and a reservoir for hematopoietic progenitors

              Platelets are critical for hemostasis, thrombosis, and inflammatory responses 1,2 , yet the events leading to mature platelet production remain incompletely understood 3 . The bone marrow (BM) is proposed to be a major site of platelet production although indirect evidence points towards a potential pulmonary contribution to platelet biogenesis 4-7 . By directly imaging the lung microcirculation in mice 8 , we discovered that a large number of megakaryocytes (MKs) circulate through the lungs where they dynamically release platelets. MKs releasing platelets in the lung are of extrapulmonary origin, such as the BM, where we observed large MKs migrating out of the BM space. The lung contribution to platelet biogenesis is substantial with approximately 50% of total platelet production or 10 million platelets per hour. Furthermore, we identified populations of mature and immature MKs along with hematopoietic progenitors that reside in the extravascular spaces of the lung. Under conditions of thrombocytopenia and relative stem cell deficiency in the BM 9 , these progenitors can migrate out of the lung, repopulate the BM, completely reconstitute blood platelet counts, and contribute to multiple hematopoietic lineages. These results position the lung as a primary site of terminal platelet production and an organ with considerable hematopoietic potential.
                Bookmark

                Author and article information

                Journal
                Front Immunol
                Frontiers in immunology
                Frontiers Media SA
                1664-3224
                1664-3224
                2019
                : 10
                Affiliations
                [1 ] Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.
                [2 ] Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria.
                [3 ] Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
                [4 ] Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
                [5 ] Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
                Article
                10.3389/fimmu.2019.00085
                6369217
                30778349
                8b80caed-91f8-4a7e-b669-fd18849adb13
                History

                NF-kappa B signaling,blood cells,coagulation,inflammation,sepsis,thrombosis,vasculature

                Comments

                Comment on this article