28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconsidering the International Association for the Study of Pain definition of pain

      Pain reports
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Updating the definition of pain.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automatic decoding of facial movements reveals deceptive pain expressions.

              In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1-3]. Two motor pathways control facial movement [4-7]: a subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions, and a cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8-11]. However, machine vision may be able to distinguish deceptive facial signals from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here, we show that human observers could not discriminate real expressions of pain from faked expressions of pain better than chance, and after training human observers, we improved accuracy to a modest 55%. However, a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system's superiority is attributable to its ability to differentiate the dynamics of genuine expressions from faked expressions. Thus, by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling.
                Bookmark

                Author and article information

                Journal
                10.1097/PR9.0000000000000634

                Comments

                Comment on this article