12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data

      ,
      Food Additives & Contaminants: Part A
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of estrogenicity of major heavy metals.

          We have employed an estrogen receptor dependent transcriptional expression assay and E-Screen assay systems to evaluate the estrogenicity of various heavy metals and their species. Using the former, the following estrogenicity ranking was measured: bis(tri-n-butyltin)>cadmium chloride>antimony chloride>barium chloride=chromium chloride>lithium hydroxide>sodium selenate=lead acetate>stannous chloride. Using the latter, the following estrogenicity ranking was measured: bis(tri-n-butyltin)>cadmium chloride>antimony chloride>lithium hydroxide>barium chloride>sodium selenate>chromium chloride. Especially, bis(tri-n-butyltin), cadmium chloride, antimony chloride, lithium hydroxide, barium chloride, and chromium chloride showed estrogenicity in both assay systems. Recent studies suggesting that bis(tri-n-butyltin), cadmium chloride, and lithium hydroxide have estrogenicities are compatible with the present findings. Furthermore, our studies are the first to suggest that antimony, barium, chromium may be estrogenic. A range of estrogenicity was observed for different species of the same heavy metal. The results demonstrate that an estrogen receptor dependent transcriptional expression assay and the E-Screen assay systems could serve as a useful method to assess the estrogenicity of heavy metals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of migration models that might be used in support of regulations for food-contact plastics.

            Materials and articles intended to come into contact with food must be shown to be safe because they might interact with food during processing, storage and the transportation of foodstuffs. Framework Directive 89/109/EEC and its related specific Directives provide this safety basis for the protection of the consumer against inadmissible chemical contamination from food-contact materials. Recently, the European Commission charged an international group of experts to demonstrate that migration modelling can be regarded as a valid and reliable tool to calculate 'reasonable worst-case' migration rates from the most important food-contact plastics into the European Union official food simulants. The paper summarizes the main steps followed to build up and validate a migration estimation model that can be used, for a series of plastic food-contact materials and migrants, for regulatory purposes. Analytical solutions of the diffusion equation in conjunction with an 'upper limit' equation for the migrant diffusion coefficient, D(P), and the use of 'worst case' partitioning coefficients K(P,F) were used in the migration model. The results obtained were then validated, at a confidence level of 95%, by comparison with the available experimental evidence. The successful accomplishment of the goals of this project is reflected by the fact that in Directive 2002/72/EC, the European Commission included the mathematical modelling as an alternative tool to determine migration rates for compliance purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

              Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small fraction of the antimony in PET plastic bottles is released into the water. Still, the use of alternative types of plastics that do not leach antimony should be considered, especially for climates where exposure to extreme conditions can promote antimony release from PET plastics.
                Bookmark

                Author and article information

                Journal
                Food Additives & Contaminants: Part A
                Food Additives & Contaminants: Part A
                Informa UK Limited
                1944-0049
                1944-0057
                January 2011
                January 2011
                : 28
                : 1
                : 115-126
                Article
                10.1080/19440049.2010.530296
                0b62d2e1-f310-439b-bffc-67afb9cd0540
                © 2011
                History

                Comments

                Comment on this article