105
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Socio-Genomic Research Using Genome-Wide Molecular Data

      1
      Annual Review of Sociology
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

          The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetic structure and history of Africans and African Americans.

            Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The landscape of Neandertal ancestry in present-day humans

              Analyses of Neandertal genomes have revealed that Neandertals have contributed genetic variants to modern humans 1–2 . The antiquity of Neandertal gene flow into modern humans means that regions that derive from Neandertals in any one human today are usually less than a hundred kilobases in size. However, Neandertal haplotypes are also distinctive enough that several studies have been able to detect Neandertal ancestry at specific loci 1,3–8 . Here, we have systematically inferred Neandertal haplotypes in the genomes of 1,004 present-day humans 12 . Regions that harbor a high frequency of Neandertal alleles in modern humans are enriched for genes affecting keratin filaments suggesting that Neandertal alleles may have helped modern humans adapt to non-African environments. Neandertal alleles also continue to shape human biology, as we identify multiple Neandertal-derived alleles that confer risk for disease. We also identify regions of millions of base pairs that are nearly devoid of Neandertal ancestry and enriched in genes, implying selection to remove genetic material derived from Neandertals. Neandertal ancestry is significantly reduced in genes specifically expressed in testis, and there is an approximately 5-fold reduction of Neandertal ancestry on chromosome X, which is known to harbor a disproportionate fraction of male hybrid sterility genes 20–22 . These results suggest that part of the reduction in Neandertal ancestry near genes is due to Neandertal alleles that reduced fertility in males when moved to a modern human genetic background.
                Bookmark

                Author and article information

                Journal
                Annual Review of Sociology
                Annu. Rev. Sociol.
                Annual Reviews
                0360-0572
                1545-2115
                July 30 2016
                July 30 2016
                : 42
                : 1
                : 275-299
                Affiliations
                [1 ]Department of Sociology, Princeton University, Princeton, NJ 08544; email:
                Article
                10.1146/annurev-soc-081715-074316
                37221f9a-0226-4e97-90be-3729f96e2280
                © 2016
                History

                Comments

                Comment on this article