31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.

      Nature nanotechnology

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The combination of low mass density, high frequency and high quality factor, Q, of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force/mass sensing and exploring the quantum regime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-Q superconducting cavity. Using thermomechanical noise as calibration, we achieve a displacement sensitivity of 17 fm Hz(-1/2). Optomechanical coupling is demonstrated by optomechanically induced reflection and absorption of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We quantitatively extract the cooperativity C, a characterization of coupling strength, from the measurement with no free parameters and find C = 8, which is promising for the quantum regime of graphene motion.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Electromechanical resonators from graphene sheets.

          Nanoelectromechanical systems were fabricated from single- and multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over trenches in silicon oxide. Vibrations with fundamental resonant frequencies in the megahertz range are actuated either optically or electrically and detected optically by interferometry. We demonstrate room-temperature charge sensitivities down to 8 x 10(-4) electrons per root hertz. The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Laser cooling of a nanomechanical oscillator into its quantum ground state

              A patterned Si nanobeam is formed which supports co-localized acoustic and optical resonances that are coupled via radiation pressure. Starting from a bath temperature of T=20K, the 3.68GHz nanomechanical mode is cooled into its quantum mechanical ground state utilizing optical radiation pressure. The mechanical mode displacement fluctuations, imprinted on the transmitted cooling laser beam, indicate that a final phonon mode occupancy of 0.85 +-0.04 is obtained.
                Bookmark

                Author and article information

                Journal
                25150717
                10.1038/nnano.2014.168

                Comments

                Comment on this article