7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Wavelet-Statistical Features Approach for Nonconvulsive Seizure Detection

      , , , ,
      Clinical EEG and Neuroscience
      SAGE Publications

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The detection of nonconvulsive seizures (NCSz) is a challenge because of the lack of physical symptoms, which may delay the diagnosis of the disease. Many researchers have reported automatic detection of seizures. However, few investigators have concentrated on detection of NCSz. This article proposes a method for reliable detection of NCSz. The electroencephalography (EEG) signal is usually contaminated by various nonstationary noises. Signal denoising is an important preprocessing step in the analysis of such signals. In this study, a new wavelet-based denoising approach using cubical thresholding has been proposed to reduce noise from the EEG signal prior to analysis. Three statistical features were extracted from wavelet frequency bands, encompassing the frequency range of 0 to 8, 8 to 16, 16 to 32, and 0 to 32 Hz. Extracted features were used to train linear classifier to discriminate between normal and seizure EEGs. The performance of the method was tested on a database of nine patients with 24 seizures in 80 hours of EEG recording. All the seizures were successfully detected, and false positive rate was found to be 0.7 per hour.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals.

          Epilepsy, a neurological disorder, is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals, which are used to detect the presence of seizures, are non-linear and dynamic in nature. Visual inspection of the EEG signals for detection of normal, interictal, and ictal activities is a strenuous and time-consuming task due to the huge volumes of EEG segments that have to be studied. Therefore, non-linear methods are being widely used to study EEG signals for the automatic monitoring of epileptic activities. The aim of our work is to develop a Computer Aided Diagnostic (CAD) technique with minimal pre-processing steps that can classify all the three classes of EEG segments, namely normal, interictal, and ictal, using a small number of highly discriminating non-linear features in simple classifiers. To evaluate the technique, segments of normal, interictal, and ictal EEG segments (100 segments in each class) were used. Non-linear features based on the Higher Order Spectra (HOS), two entropies, namely the Approximation Entropy (ApEn) and the Sample Entropy (SampEn), and Fractal Dimension and Hurst Exponent were extracted from the segments. Significant features were selected using the ANOVA test. After evaluating the performance of six classifiers (Decision Tree, Fuzzy Sugeno Classifier, Gaussian Mixture Model, K-Nearest Neighbor, Support Vector Machine, and Radial Basis Probabilistic Neural Network) using a combination of the selected features, we found that using a set of all the selected six features in the Fuzzy classifier resulted in 99.7% classification accuracy. We have demonstrated that our technique is capable of achieving high accuracy using a small number of features that accurately capture the subtle differences in the three different types of EEG (normal, interictal, and ictal) segments. The technique can be easily written as a software application and used by medical professionals without any extensive training and cost. Such software can evolve into an automatic seizure monitoring application in the near future and can aid the doctors in providing better and timely care for the patients suffering from epilepsy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fractality analysis of frontal brain in major depressive disorder.

            EEGs of the frontal brain of patients diagnosed with major depressive disorder (MDD) have been investigated in recent years using linear methods but not based on nonlinear methods. This paper presents an investigation of the frontal brain of MDD patients using the wavelet-chaos methodology and Katz's and Higuchi's fractal dimensions (KFD and HFD) as measures of nonlinearity and complexity. EEGs of the frontal brain of healthy adults and MDD patients are decomposed into 5 EEG sub-bands employing a wavelet filter bank, and the FDs of the band-limited as well as those of their 5 sub-bands are computed. Then, using the ANOVA statistical test, HFDs and KFDs of the left and right frontal lobes in EEG full-band and sub-bands of MDD and healthy groups are compared in order to discover the FDs showing the most meaningful differences between the two groups. Finally, the discovered FDs are used as input to a classifier, enhanced probabilistic neural network (EPNN), to discriminate the MDD from healthy EEGs. The results of HFD show higher complexity of left, right and overall frontal lobes of the brain of MDD compared with non-MDD in beta and gamma sub-bands. Moreover, it is observed that HFD of the beta band is more discriminative than HFD of the gamma band for discriminating MDD and non-MDD participants, while the KFD did not show any meaningful difference. A high accuracy of 91.3% is achieved for classification of MDD and non-MDD EEGs based on HFDs of left, right, and overall frontal brain beta sub-band. The findings of this research, however, should be considered tentative because of limited data available to the authors. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Classification of EEG signals using neural network and logistic regression.

              Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.
                Bookmark

                Author and article information

                Journal
                Clinical EEG and Neuroscience
                Clin EEG Neurosci
                SAGE Publications
                1550-0594
                2169-5202
                October 16 2013
                June 16 2014
                : 45
                : 4
                : 274-284
                Article
                10.1177/1550059414535465
                2ad49bcf-7b1b-43b5-be8c-44e20b1709b9
                © 2014

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article