28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Effects of simvastatin on oxidative stress in streptozotocin-induced diabetic rats: a role for glomeruli protection.

      Nephron. Experimental Nephrology
      Albuminuria, Animals, Antioxidants, Blood Glucose, Catalase, metabolism, Cholesterol, HDL, blood, Cholesterol, LDL, Diabetes Mellitus, Experimental, complications, drug therapy, physiopathology, Diabetic Nephropathies, prevention & control, Glutathione Transferase, Hypolipidemic Agents, pharmacology, Kidney Glomerulus, anatomy & histology, pathology, physiology, Lipid Peroxidation, Male, Oxidative Stress, drug effects, Proteinuria, Rats, Rats, Sprague-Dawley, Simvastatin, Superoxide Dismutase, Triglycerides, analysis

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To study the effects of simvastatin on oxidative stress in rats with early stage diabetic nephropathy. 60 male Sprague-Dawley rats were divided into three groups: control group (CN), streptozotocin (STZ)-induced diabetic rats group (DM) and STZ-induced diabetic rats group treated with simvastatin (DM+S). The following parameters were measured at weeks 6 and 12 in similar rats chosen randomly from each group: body and kidney weight, 24-hour urinary albumin excretion (UAE), biochemical indexes including blood glucose (GLU), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), serum creatinine (SCr), antioxidant enzymes including superoxide dismutase (SOD), glutathione S-transferase (GST), catalase (CAT) in plasma, lipid peroxidation production as malondialdehyde in plasma (MDAp) and erythrocytes (MDAe), morphology parameters such as glomerular volume (GV) and mesangial area/total glomerular area (M/T). At weeks 6 and 12, GLU and kidney weight to body weight ratio were notably increased in both of the diabetic groups compared with those in the CN group without significant differences between the two diabetic groups. There were no significant differences of SCr, LDL, HDL and TG among all groups within all the experimental time. MDAp and MDAe were significantly increased in both of the diabetic groups, especially at week 12, while SOD, GST and CAT were significantly decreased compared with those in the CN group. At week 12, GV, M/T and UAE were also increased in the two diabetic groups. However, in the DM+S group, changes of lipid peroxidation production, antioxidant enzymes, UAE and GV were less pronounced than those in the DM group. Pearson's correlation analysis and regression analysis shown that MDAp was increased while SOD, GST and CAT in plasma were decreased with elevation of UAE, GV and M/T. Increased lipid peroxidation and decreased antioxidant enzymes in plasma may play a role in the progression of diabetic nephropathy. Simvastatin may ameliorate these changes to protect kidney from oxidative lesion in diabetes even in the absence of lipid abnormalities.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A simple method for determination of serum catalase activity and revision of reference range

            L Góth (1991)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contribution of polyol pathway to diabetes-induced oxidative stress.

              Diabetes causes increased oxidative stress, which is thought to play an important role in the pathogenesis of various diabetic complications. However, the source of the hyperglycemia-induced oxidative stress is not clear. It was found that the polyol pathway is the major contributor to oxidative stress in the lenses and nerves of diabetic mice. The first enzyme in the pathway, aldose reductase (AR), reduces glucose to sorbitol, which is then converted to fructose by sorbitol dehydrogenase (SDH). Transgenic mice that overexpress AR specifically in their lenses showed a significant increase in oxidative stress when they became hyperglycemic, as indicated by a decrease in GSH and an increase in malondialdehyde in their lenses. Introducing an SDH-deficient mutation into these transgenic mice significantly normalized the GSH and malondialdehyde levels. These results indicate that both enzymes of the polyol pathway contributed to hyperglycemia-induced oxidative stress in the lens. In the wild-type mice, diabetes caused a significant decrease in GSH in their sciatic nerves, indicative of oxidative stress. In the AR null mutant mice, diabetes did not lead to any decrease in the nerve GSH level. These results indicate that similar to the situation in the lens, AR is also the major contributor to hyperglycemia-induced oxidative stress in the nerve. Although increased flux of glucose through the polyol pathway leads to diabetic lesions in both the lenses and nerve, the mechanisms may be different. AR-induced osmotic stress seems to be the cause of diabetic cataract, whereas AR-induced oxidative stress is probably the cause of neuronal dysfunction.
                Bookmark

                Author and article information

                Comments

                Comment on this article