20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Metformin and GANT61 Combinations on the Radiosensitivity of Prostate Cancer Cells

      International Journal of Molecular Sciences
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found

          Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.

          Recent population studies provide clues that the use of metformin may be associated with reduced incidence and improved prognosis of certain cancers. This drug is widely used in the treatment of type 2 diabetes, where it is often referred to as an "insulin sensitizer" because it not only lowers blood glucose but also reduces the hyperinsulinemia associated with insulin resistance. As insulin and insulin-like growth factors stimulate proliferation of many normal and transformed cell types, agents that facilitate signaling through these receptors would be expected to enhance proliferation. We show here that metformin acts as a growth inhibitor rather than an insulin sensitizer for epithelial cells. Breast cancer cells can be protected against metformin-induced growth inhibition by small interfering RNA against AMP kinase. This shows that AMP kinase pathway activation by metformin, recently shown to be necessary for metformin inhibition of gluconeogenesis in hepatocytes, is also involved in metformin-induced growth inhibition of epithelial cells. The growth inhibition was associated with decreased mammalian target of rapamycin and S6 kinase activation and a general decrease in mRNA translation. These results provide evidence for a mechanism that may contribute to the antineoplastic effects of metformin suggested by recent population studies and justify further work to explore potential roles for activators of AMP kinase in cancer prevention and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.

            Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level.

              Metformin is a widely used antidiabetic agent, which regulates glucose homeostasis through inhibition of liver glucose production and an increase in muscle glucose uptake. Recent studies suggest that metformin may reduce the risk of cancer, but its mode of action in cancer remains not elucidated. We investigated the effect of metformin on human prostate cancer cell proliferation in vitro and in vivo. Metformin inhibited the proliferation of DU145, PC-3 and LNCaP cancer cells with a 50% decrease of cell viability and had a modest effect on normal prostate epithelial cell line P69. Metformin did not induce apoptosis but blocked cell cycle in G(0)/G(1). This blockade was accompanied by a strong decrease of cyclin D1 protein level, pRb phosphorylation and an increase in p27(kip) protein expression. Metformin activated the AMP kinase pathway, a fuel sensor signaling pathway. However, inhibition of the AMPK pathway using siRNA against the two catalytic subunits of AMPK did not prevent the antiproliferative effect of metformin in prostate cancer cells. Importantly, oral and intraperitoneal treatment with metformin led to a 50 and 35% reduction of tumor growth, respectively, in mice bearing xenografts of LNCaP. Similar, to the in vitro study, metformin led to a strong reduction of cyclin D1 protein level in tumors providing evidence for a mechanism that may contribute to the antineoplastic effects of metformin suggested by recent epidemiological studies.
                Bookmark

                Author and article information

                Journal
                10.3390/ijms18020399
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article