33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A critical review of the biological mechanisms underlying thein vivoandin vitrotoxicity of carbon nanotubes: The contribution of physico-chemical characteristics

      Nanotoxicology
      Informa UK Ltd.

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: not found
          • Article: not found

          Safe handling of nanotechnology.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.

            The aim of this study was to evaluate the acute lung toxicity of intratracheally instilled single-wall carbon nanotubes (SWCNT) in rats. The lungs of rats were instilled either with 1 or 5 mg/kg of the following control or particle types: (1) SWCNT, (2) quartz particles (positive control), (3) carbonyl iron particles (negative control), (4) phosphate-buffered saline (PBS) + 1% Tween 80, or (5) graphite particles (lung tissue studies only). Following exposures, the lungs of PBS and particle-exposed rats were assessed using bronchoalveolar lavage (BAL) fluid biomarkers and cell proliferation methods, and by histopathological evaluation of lung tissue at 24 h, 1 week, 1 month, and 3 months postinstillation. Exposures to high-dose (5 mg/kg) SWCNT produced mortality in ~15% of the SWCNT-instilled rats within 24 h postinstillation. This mortality resulted from mechanical blockage of the upper airways by the instillate and was not due to inherent pulmonary toxicity of the instilled SWCNT particulate. Exposures to quartz particles produced significant increases versus controls in pulmonary inflammation, cytotoxicity, and lung cell parenchymal cell proliferation indices. Exposures to SWCNT produced transient inflammatory and cell injury effects. Results from the lung histopathology component of the study indicated that pulmonary exposures to quartz particles (5 mg/kg) produced dose-dependent inflammatory responses, concomitant with foamy alveolar macrophage accumulation and lung tissue thickening at the sites of normal particle deposition. Pulmonary exposures to carbonyl iron or graphite particles produced no significant adverse effects. Pulmonary exposures to SWCNT in rats produced a non-dose-dependent series of multifocal granulomas, which were evidence of a foreign tissue body reaction and were nonuniform in distribution and not progressive beyond 1 month postexposure (pe). The observation of SWCNT-induced multifocal granulomas is inconsistent with the following: (1) lack of lung toxicity by assessing lavage parameters, (2) lack of lung toxicity by measuring cell proliferation parameters, (3) an apparent lack of a dose response relationship, (4) nonuniform distribution of lesions, (5) the paradigm of dust-related lung toxicity effects, (6) possible regression of effects over time. In addition, the results of two recent exposure assessment studies indicate very low aerosol SWCNT exposures at the workplace. Thus, the physiological relevance of these findings should ultimately be determined by conducting an inhalation toxicity study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

              Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest that ultrafine particles composed of low-toxicity material such as polystyrene have proinflammatory activity as a consequence of their large surface area. This supports a role for such particles in the adverse health effects of PM(10). Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Journal
                10.3109/17435390903569639

                Comments

                Comment on this article