9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recombinant High-Mobility Group Box 1 (rHMGB1) Promotes NRF2-Independent Mitochondrial Fusion through CXCR4/PSMB5-Mediated Drp1 Degradation in Endothelial Cells

      1 , 2 , 2 , 2 , 2 , 2 , 1
      Oxidative Medicine and Cellular Longevity
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial dynamics plays an important role in maintaining normal endothelial cell function and in the pathogenesis of cardiovascular disease. It is not identified whether high-mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule, could influence mitochondrial dynamics in endothelial cells. The objective of this study is to clarify the effect of HMGB1 on mitochondrial dynamics in endothelial cells and the underlying mechanism. EA.hy926 human endothelial cells were incubated with recombinant HMGB1 (rHMGB1); mitochondrial morphology was observed with a confocal microscope and transmission electron microscope (TEM). The expression of dynamin-related protein 1 (Drp1), Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Optic atrophy 1 (Opa1), phosphatase and tensin homolog- (PTEN-) induced kinase 1 (PINK1), NOD-like receptor 3 (NLRP3), caspase 1, cleaved caspase 1, 20S proteasome subunit beta 5 (PSMB5), and antioxidative master nuclear factor E2-related factor 2 (NRF2) and the concentration of interleukin 1β (IL-1β) were determined. Specific inhibitors C29, TAK-242, FPS-ZM1, AMD3100, and epoxomicin were used to block toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), C-X-C-chemokine receptor 4 (CXCR4), and PSMB5, respectively. siRNAs were used to silence the expression of NRF2. rHMGB1 promoted mitochondrial fusion in endothelial cells, while no significant proinflammatory effects were found. The expression of mitochondrial fission protein Drp1 and phosphorylated subtypes p-Drp1-S616 and p-Drp1-S637 were all downregulated; no significant expression changes of PINK1 and Mfn1, Mfn2, and Opa1 were found. Inhibition of CXCR4 but not TLR4, RAGE, or TLR2 reversed rHMGB1-induced Drp1 downregulation and mitochondrial fusion. Interestingly, inhibition of TLR4 with TAK-242 promoted Drp1 downregulation and mitochondrial fusion. rHMGB1 increased the expression of NRF2 and PSMB5; inhibition of PSMB5 but not silencing NRF2 abolished rHMGB1-induced Drp1 downregulation and mitochondrial fusion. These results indicate that rHMGB1 promotes NRF2 independent mitochondrial fusion via CXCR4/PSMB5 pathway-mediated Drp1 proteolysis. rHMGB1 may influence mitochondrial and endothelial function through this effect on mitochondrial dynamics.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.

          Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial Dynamics and Its Involvement in Disease

              David Chan (2020)
              The dynamic properties of mitochondria—including their fusion, fission, and degradation—are critical for their optimal function in energy generation. The interplay of fusion and fission confers widespread benefits on mitochondria, including efficient transport, increased homogenization of the mitochondrial population, and efficient oxidative phosphorylation. These benefits arise through control of morphology, content exchange, equitable inheritance of mitochondria, maintenance of high-quality mitochondrial DNA, and segregation of damaged mitochondria for degradation. The key components of the machinery mediating mitochondrial fusion and fission belong to the dynamin family of GTPases that utilize GTP hydrolysis to drive mechanical work on biological membranes. Defects in this machinery cause a range of diseases that especially affect the nervous system. In addition, several common diseases, including neurodegenerative diseases and cancer, strongly affect mitochondrial dynamics.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxidative Medicine and Cellular Longevity
                Oxidative Medicine and Cellular Longevity
                Hindawi Limited
                1942-0994
                1942-0900
                August 2 2021
                August 2 2021
                : 2021
                : 1-20
                Affiliations
                [1 ]Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
                [2 ]Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
                Article
                10.1155/2021/9993240
                c68cce19-7ec9-4184-8e3a-23048519c152
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article