8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Induced plant defenses, host-pathogen interactions, and forest insect outbreaks

      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Tannins in plant-herbivore interactions.

          Tannins are the most abundant secondary metabolites made by plants, commonly ranging from 5% to 10% dry weight of tree leaves. Tannins can defend leaves against insect herbivores by deterrence and/or toxicity. Contrary to early theories, tannins have no effect on protein digestion in insect herbivores. By contrast, in vertebrate herbivores tannins can decrease protein digestion. Tannins are especially prone to oxidize in insects with high pH guts, forming semiquinone radicals and quinones, as well as other reactive oxygen species. Tannin toxicity in insects is thought to result from the production of high levels of reactive oxygen species. Tannin structure has an important effect on biochemical activity. Ellagitannins oxidize much more readily than do gallotannins, which are more oxidatively active than most condensed tannins. The ability of insects to tolerate ingested tannins comes from a variety of biochemical and physical defenses in their guts, including surfactants, high pH, antioxidants, and a protective peritrophic envelope that lines the midgut. Most work on the ecological roles of tannins has been correlative, e.g., searching for negative associations between tannins and insect performance. A greater emphasis on manipulative experiments that control tannin levels is required to make further progress on the defensive functions of tannins. Recent advances in the use of molecular methods has permitted the production of tannin-overproducing transgenic plants and a better understanding of tannin biosynthetic pathways. Many research areas remain in need of further work, including the effects of different tannin types on different types of insects (e.g., caterpillars, grasshoppers, sap-sucking insects). Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of food and predation on the snowshoe hare cycle.

            Snowshoe hare populations in the boreal forests of North America go through 10-year cycles. Supplemental food and mammalian predator abundance were manipulated in a factorial design on 1-square-kilometer areas for 8 years in the Yukon. Two blocks of forest were fertilized to test for nutrient effects. Predator exclosure doubled and food addition tripled hare density during the cyclic peak and decline. Predator exclosure combined with food addition increased density 11-fold. Added nutrients increased plant growth but not hare density. Food and predation together had a more than additive effect, which suggests that a three-trophic-level interaction generates hare cycles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Jasmonate-induced responses are costly but benefit plants under attack in native populations.

              I Baldwin (1998)
              Herbivore attack is widely known to reduce food quality and to increase chemical defenses and other traits responsible for herbivore resistance. Inducible defenses are commonly thought to allow plants to forgo the costs of defense when not needed; however, neither their defensive function (increasing a plant's fitness) nor their cost-savings function have been demonstrated in nature. The root-produced toxin nicotine increases after herbivore attack in the native, postfire annual Nicotiana attenuata and is internally activated by the wound hormone, jasmonic acid. I treated the roots of plants with the methyl ester of this hormone (MeJA) to elicit a response in one member of each of 745 matched pairs of plants growing in native populations with different probabilities of attack from herbivores, and measured the lifetime production of viable seed. In populations with intermediate rates of attack, induced plants were attacked less often by herbivores and survived to produce more seed than did their uninduced counterparts. Previous induction did not significantly increase the fitness of plants suffering high rates of attack. However, if plants had not been attacked, induced plants produced less seed than did their uninduced counterparts. Jasmonate-induced responses function as defenses but are costly, and inducibility allows this species to forgo these costs when the defenses are unnecessary.
                Bookmark

                Author and article information

                Journal
                10.1073/pnas.1300759110

                Comments

                Comment on this article