Blog
About

48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertension is a complex condition and is the most common cardiovascular risk factor, contributing to widespread morbidity and mortality. Approximately 90% of hypertension cases are classified as essential hypertension, where the precise cause is unknown. Hypertension is associated with inflammation; however, whether inflammation is a cause or effect of hypertension is not well understood. The purpose of this review is to describe evidence from human and animal studies that inflammation leads to the development of hypertension, as well as the evidence for involvement of oxidative stress and endothelial dysfunction--both thought to be key steps in the development of hypertension. Other potential proinflammatory conditions that contribute to hypertension-such as activation of the sympathetic nervous system, aging, and elevated aldosterone--are also discussed. Finally, we consider the potential benefit of anti-inflammatory drugs and statins for antihypertensive therapy. The evidence reviewed suggests that inflammation can lead to the development of hypertension and that oxidative stress and endothelial dysfunction are involved in the inflammatory cascade. Aging and aldosterone may also both be involved in inflammation and hypertension. Hence, in the absence of serious side effects, anti-inflammatory drugs could potentially be used to treat hypertension in the future.

          Related collections

          Most cited references 175

          • Record: found
          • Abstract: found
          • Article: not found

          Global burden of hypertension: analysis of worldwide data.

          Reliable information about the prevalence of hypertension in different world regions is essential to the development of national and international health policies for prevention and control of this condition. We aimed to pool data from different regions of the world to estimate the overall prevalence and absolute burden of hypertension in 2000, and to estimate the global burden in 2025. We searched the published literature from Jan 1, 1980, to Dec 31, 2002, using MEDLINE, supplemented by a manual search of bibliographies of retrieved articles. We included studies that reported sex-specific and age-specific prevalence of hypertension in representative population samples. All data were obtained independently by two investigators with a standardised protocol and data-collection form. Overall, 26.4% (95% CI 26.0-26.8%) of the adult population in 2000 had hypertension (26.6% of men [26.0-27.2%] and 26.1% of women [25.5-26.6%]), and 29.2% (28.8-29.7%) were projected to have this condition by 2025 (29.0% of men [28.6-29.4%] and 29.5% of women [29.1-29.9%]). The estimated total number of adults with hypertension in 2000 was 972 million (957-987 million); 333 million (329-336 million) in economically developed countries and 639 million (625-654 million) in economically developing countries. The number of adults with hypertension in 2025 was predicted to increase by about 60% to a total of 1.56 billion (1.54-1.58 billion). Hypertension is an important public-health challenge worldwide. Prevention, detection, treatment, and control of this condition should receive high priority.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.

            Increased levels of the inflammatory biomarker high-sensitivity C-reactive protein predict cardiovascular events. Since statins lower levels of high-sensitivity C-reactive protein as well as cholesterol, we hypothesized that people with elevated high-sensitivity C-reactive protein levels but without hyperlipidemia might benefit from statin treatment. We randomly assigned 17,802 apparently healthy men and women with low-density lipoprotein (LDL) cholesterol levels of less than 130 mg per deciliter (3.4 mmol per liter) and high-sensitivity C-reactive protein levels of 2.0 mg per liter or higher to rosuvastatin, 20 mg daily, or placebo and followed them for the occurrence of the combined primary end point of myocardial infarction, stroke, arterial revascularization, hospitalization for unstable angina, or death from cardiovascular causes. The trial was stopped after a median follow-up of 1.9 years (maximum, 5.0). Rosuvastatin reduced LDL cholesterol levels by 50% and high-sensitivity C-reactive protein levels by 37%. The rates of the primary end point were 0.77 and 1.36 per 100 person-years of follow-up in the rosuvastatin and placebo groups, respectively (hazard ratio for rosuvastatin, 0.56; 95% confidence interval [CI], 0.46 to 0.69; P<0.00001), with corresponding rates of 0.17 and 0.37 for myocardial infarction (hazard ratio, 0.46; 95% CI, 0.30 to 0.70; P=0.0002), 0.18 and 0.34 for stroke (hazard ratio, 0.52; 95% CI, 0.34 to 0.79; P=0.002), 0.41 and 0.77 for revascularization or unstable angina (hazard ratio, 0.53; 95% CI, 0.40 to 0.70; P<0.00001), 0.45 and 0.85 for the combined end point of myocardial infarction, stroke, or death from cardiovascular causes (hazard ratio, 0.53; 95% CI, 0.40 to 0.69; P<0.00001), and 1.00 and 1.25 for death from any cause (hazard ratio, 0.80; 95% CI, 0.67 to 0.97; P=0.02). Consistent effects were observed in all subgroups evaluated. The rosuvastatin group did not have a significant increase in myopathy or cancer but did have a higher incidence of physician-reported diabetes. In this trial of apparently healthy persons without hyperlipidemia but with elevated high-sensitivity C-reactive protein levels, rosuvastatin significantly reduced the incidence of major cardiovascular events. (ClinicalTrials.gov number, NCT00239681.) 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atherosclerosis.

               Eriks Lusis (2000)
              Atherosclerosis, a disease of the large arteries, is the primary cause of heart disease and stroke. In westernized societies, it is the underlying cause of about 50% of all deaths. Epidemiological studies have revealed several important environmental and genetic risk factors associated with atherosclerosis. Progress in defining the cellular and molecular interactions involved, however, has been hindered by the disease's aetiological complexity. Over the past decade, the availability of new investigative tools, including genetically modified mouse models of disease, has resulted in a clearer understanding of the molecular mechanisms that connect altered cholesterol metabolism and other risk factors to the development of atherosclerotic plaque. It is now clear that atherosclerosis is not simply an inevitable degenerative consequence of ageing, but rather a chronic inflammatory condition that can be converted into an acute clinical event by plaque rupture and thrombosis.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                BioMed research international
                Hindawi Limited
                2314-6141
                2014
                : 2014
                Affiliations
                [1 ] Vascular Biology & Immunopharmacology Group, Department of Pharmacology, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
                Article
                10.1155/2014/406960
                4124649

                Comments

                Comment on this article