31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of puerarin against IL-1β-mediated leukostasis and apoptosis in retinal capillary endothelial cells (TR-iBRB2).

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blood-retinal barrier (BRB) breakdown, the early hallmark of diabetic retinopathy (DR), is thought to depend on retinal inflammation and cell damage. The proinflammatory factor interleukin-1β (IL-1β) was demonstrated to cause inflammation as well as cell apoptosis during the process of BRB breakdown. This study extensively evaluated the protective effect of puerarin, a major active component extracted from the traditional herb Radix puerariae, against IL-1β-induced cell dysfunction in TR-iBRB2 cells, a retinal capillary endothelial cell line.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked.

          Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A central role for inflammation in the pathogenesis of diabetic retinopathy.

            Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy.

              Diabetes leads to vascular leakage, glial dysfunction, and neuronal apoptosis within the retina. The goal of the studies reported here was to determine the role that retinal microglial cells play in diabetic retinopathy and assess whether minocycline can decrease microglial activation and alleviate retinal complications. Immunohistochemical analyses showed that retinal microglia are activated early in diabetes. Furthermore, mRNAs for interleukin-1beta and tumor necrosis factor-alpha, proinflammatory mediators known to be released from microglia, are also increased in the retina early in the course of diabetes. Using an in vitro bioassay, we demonstrated that cytokine-activated microglia release cytotoxins that kill retinal neurons. Furthermore, we showed that neuronal apoptosis is increased in the diabetic retina, as measured by caspase-3 activity. Minocycline represses diabetes-induced inflammatory cytokine production, reduces the release of cytotoxins from activated microglia, and significantly reduces measurable caspase-3 activity within the retina. These results indicate that inhibiting microglial activity may be an important strategy in the treatment of diabetic retinopathy and that drugs such as minocycline hold promise in delaying or preventing the loss of vision associated with this disease.
                Bookmark

                Author and article information

                Journal
                Mol. Vis.
                Molecular vision
                1090-0535
                1090-0535
                2014
                : 20
                Affiliations
                [1 ] Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi, Jiangsu Province, China.
                [2 ] Save Sight Institute, University of Sydney, NSW, Australia.
                [3 ] Faculty of Pharmacy, University of Sydney, NSW, Australia.
                Article
                4287719
                25593509
                95c19d25-1720-4ae6-89d3-fc434111d4e8
                History

                Comments

                Comment on this article