7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tenderness and intramuscular fat content are key attributes for beef sensory qualities. Recently some proteomic analysis revealed several proteins which are considered as good biomarkers of these quality traits. This study focuses on the analysis of 20 of these proteins representative of several biological functions: muscle structure and ultrastructure, muscle energetic metabolism, cellular stress and apoptosis. The relative abundance of the proteins was measured by Reverse Phase Protein Array (RPPA) in five muscles known to have different tenderness and intramuscular lipid contents: Longissimus thoracis (LT), Semimembranosus (SM), Rectus abdominis (RA), Triceps brachii (TB) and Semitendinosus (ST). The main results showed a muscle type effect on 16 among the 20 analyzed proteins. They revealed differences in protein abundance depending on the contractile and metabolic properties of the muscles. The RA muscle was the most different by 11 proteins differentially abundant comparatively to the four other muscles. Among these 11 proteins, six were less abundant namely enolase 3 (ENO3), phosphoglucomutase 1 (PGK1), aldolase (ALDOA), myosin heavy chain IIX (MyHC-IIX), fast myosin light chain 1 (MLC1F), triosephosphate isomerase 1 (TPI1) and five more abundant: Heat shock protein (HSP27, HSP70-1A1, αB-crystallin (CRYAB), troponin T slow (TNNT1), and aldolase dehydrogenase 1 (ALDH1A1). Four proteins: HSP40, four and a half LIM domains protein 1 (FHL1), glycogen phosphorylase B (PYGB) and malate dehydrogenase (MDH1) showed the same abundance whatever the muscle. The correlations observed between the 20 proteins in all the five muscles were used to construct a correlation network. The proteins the most connected with the others were in the following order MyHC-IIX, CRYAB, TPI1, PGK1, ALDH1A1, HSP27 and TNNT1. This knowledge is important for understanding the biological functions related to beef tenderness and intramuscular fat content.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The LIM domain: from the cytoskeleton to the nucleus.

          First described 15 years ago as a cysteine-rich sequence that was common to a small group of homeodomain transcription factors, the LIM domain is now recognized as a tandem zinc-finger structure that functions as a modular protein-binding interface. LIM domains are present in many proteins that have diverse cellular roles as regulators of gene expression, cytoarchitecture, cell adhesion, cell motility and signal transduction. An emerging theme is that LIM proteins might function as biosensors that mediate communication between the cytosolic and the nuclear compartments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Consumer thresholds for establishing the value of beef tenderness.

            In the present study, a national consumer evaluation was conducted for beef tenderness on USDA Select strip loin steaks of known Warner-Bratzler shear (WBS) force values, ranging from tough (> 5.7 kg) to tender ( or = 86% consumer acceptability. Consumer acceptability for tenderness decreased from 86% at 4.3 kg for a "slightly tender" rating to 59% at 4.9 kg for a "slightly tough" rating. Data from the present study suggested that consumer WBS tenderness values of 4.9 kg would result in 100, 99, 94, 86, and 25% customer satisfaction for beef tenderness, respectively. Seventy-eight percent of the consumers would purchase steaks if the retailer guaranteed them to be tender. The retail steak value differences found in this study would result in the opportunity for a premium to be paid for a guaranteed tender ( 5.7 kg) classification. A premium of $66.96 could be paid to the tender classification carcasses vs the tough (> 4.9 kg) classification carcasses, and a premium of $36.58 could be paid for the tender classification carcasses vs the intermediate (> 3.0 to < 4.6 kg) classification carcasses. Results from the present study show that consumers can segregate differences in beef tenderness and that consumers are willing to pay more for more-tender beef.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy.

              Emery-Dreifuss muscular dystrophy (EDMD) is a rare disorder characterized by early joint contractures, muscular dystrophy, and cardiac involvement with conduction defects and arrhythmias. So far, only 35% of EDMD cases are genetically elucidated and associated with EMD or LMNA gene mutations, suggesting the existence of additional major genes. By whole-genome scan, we identified linkage to the Xq26.3 locus containing the FHL1 gene in three informative families belonging to our EMD- and LMNA-negative cohort. Analysis of the FHL1 gene identified seven mutations, in the distal exons of FHL1 in these families, three additional families, and one isolated case, which differently affect the three FHL1 protein isoforms: two missense mutations affecting highly conserved cysteines, one abolishing the termination codon, and four out-of-frame insertions or deletions. The predominant phenotype was characterized by myopathy with scapulo-peroneal and/or axial distribution, as well as joint contractures, and associated with a peculiar cardiac disease characterized by conduction defects, arrhythmias, and hypertrophic cardiomyopathy in all index cases of the seven families. Heterozygous female carriers were either asymptomatic or had cardiac disease and/or mild myopathy. Interestingly, four of the FHL1-mutated male relatives had isolated cardiac disease, and an overt hypertrophic cardiomyopathy was present in two. Expression and functional studies demonstrated that the FHL1 proteins were severely reduced in all tested patients and that this was associated with a severe delay in myotube formation in the two patients for whom myoblasts were available. In conclusion, FHL1 should be considered as a gene associated with the X-linked EDMD phenotype, as well as with hypertrophic cardiomyopathy.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                7 June 2018
                2018
                : 6
                : e4891
                Affiliations
                [1 ]Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores , Saint-Genès-Champanelle, France
                [2 ]Institut Curie Centre de Recherche, Université de recherche PSL, Plateforme RPPA , Paris, France
                [3 ]S.I.C.A. Rouge des Prés, Domaines des rues , Chenillé-Champteussé, France
                Article
                4891
                10.7717/peerj.4891
                5994332
                29892502
                0003bda5-e0ef-4c03-a7cd-a328299ab375
                ©2018 Picard et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 24 March 2018
                : 14 May 2018
                Funding
                Funded by: Pays de Loire Region
                Funded by: The defense Trade Union of PDO Maine-Anjou
                This study was supported by Pays de Loire Region and the defense Trade Union of PDO Maine-Anjou. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Agricultural Science
                Biochemistry
                Food Science and Technology
                Genomics

                cattle,muscle type,biomarkers,rppa,proteomics,biological mechanisms

                Comments

                Comment on this article