19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of gamma oscillations.

          Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources.

            To address the problem of volume conduction and active reference electrodes in the assessment of functional connectivity, we propose a novel measure to quantify phase synchronization, the phase lag index (PLI), and compare its performance to the well-known phase coherence (PC), and to the imaginary component of coherency (IC). The PLI is a measure of the asymmetry of the distribution of phase differences between two signals. The performance of PLI, PC, and IC was examined in (i) a model of 64 globally coupled oscillators, (ii) an EEG with an absence seizure, (iii) an EEG data set of 15 Alzheimer patients and 13 control subjects, and (iv) two MEG data sets. PLI and PC were more sensitive than IC to increasing levels of true synchronization in the model. PC and IC were influenced stronger than PLI by spurious correlations because of common sources. All measures detected changes in synchronization during the absence seizure. In contrast to PC, PLI and IC were barely changed by the choice of different montages. PLI and IC were superior to PC in detecting changes in beta band connectivity in AD patients. Finally, PLI and IC revealed a different spatial pattern of functional connectivity in MEG data than PC. The PLI performed at least as well as the PC in detecting true changes in synchronization in model and real data but, at the same token and like-wise the IC, it was much less affected by the influence of common sources and active reference electrodes. Copyright 2007 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Wavelet Transforms and their Applications to Turbulence

              M Farge (1992)
                Bookmark

                Author and article information

                Contributors
                vicent.teruel@uv.es
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                30 August 2017
                30 August 2017
                2017
                : 7
                : 9924
                Affiliations
                [1 ]ISNI 0000 0001 2173 938X, GRID grid.5338.d, Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, ; Burjassot, Spain
                [2 ]ISNI 0000 0001 2173 938X, GRID grid.5338.d, Laboratori de Circuits Neurals, Department of d’Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, ; Valencia, Spain
                [3 ]Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I. Castelló de la Plana, Castelló, Spain
                Author information
                http://orcid.org/0000-0001-9498-7966
                Article
                10089
                10.1038/s41598-017-10089-4
                5577179
                0012c6f1-09bc-461a-a363-cac6bef5ab43
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 May 2017
                : 3 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article