10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autosegmentation of cardiac substructures in respiratory-gated, non-contrasted computed tomography images

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Radiation dose to specific cardiac substructures can have a significant on treatment related morbidity and mortality, yet definition of these structures is labor intensive and not standard. Autosegmentation software may potentially address these issues, however it is unclear whether this approach can be broadly applied across different treatment planning conditions. We investigated the feasibility of autosegmentation of the cardiac substructures in four-dimensional (4D) computed tomography (CT), respiratory-gated, non-contrasted imaging.

          AIM

          To determine whether autosegmentation can be successfully employed on 4DCT respiratory-gated, non-contrasted imaging.

          METHODS

          We included patients who underwent stereotactic body radiation therapy for inoperable, early-stage non-small cell lung cancer from 2007 to 2019. All patients were simulated via 4DCT imaging with respiratory gating without intravenous contrast. Generated structure quality was evaluated by degree of required manual edits and volume discrepancy between the autocontoured structures and its edited sister structure.

          RESULTS

          Initial 17-structure cardiac atlas was generated with 20 patients followed by three successive iterations of 10 patients using MIM software. The great vessels and heart chambers were reliably autosegmented with most edits considered minor. In contrast, coronary arteries either failed to be autosegmented or the generated structures required major alterations necessitating deletion and manual definition. Similarly, the generated mitral and tricuspid valves were poor whereas the aortic and pulmonary valves required at least minor and moderate changes respectively. For the majority of subsites, the additional samples did not appear to substantially impact the quality of generated structures. Volumetric analysis between autosegmented and its manually edited sister structure yielded comparable findings to the physician-based assessment of structure quality.

          CONCLUSION

          The use of MIM software with 30-sample subject library was found to be useful in delineating many of the heart substructures with acceptable clinical accuracy on respiratory-gated 4DCT imaging. Small volume structures, such as the coronary arteries were poorly autosegmented and require manual definition.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemoradiotherapy With or Without Cetuximab for Unresectable Stage III Non–Small-Cell Lung Cancer

          RTOG 0617 compared standard-dose (SD; 60 Gy) versus high-dose (HD; 74 Gy) radiation with concurrent chemotherapy and determined the efficacy of cetuximab for stage III non–small-cell lung cancer (NSCLC). The study used a 2 × 2 factorial design with radiation dose as 1 factor and cetuximab as the other, with a primary end point of overall survival (OS). Median follow-up was 5.1 years. There were 3 grade 5 adverse events (AEs) in the SD arm and 9 in the HD arm. Treatment-related grade ≥3 dysphagia and esophagitis occurred in 3.2% and 5.0% of patients in the SD arm v 12.1% and 17.4% in the HD arm, respectively ( P = .0005 and < .0001). There was no difference in pulmonary toxicity, with grade ≥3 AEs in 20.6% and 19.3%. Median OS was 28.7 v 20.3 months ( P = .0072) in the SD and HD arms, respectively, 5-year OS and progression-free survival (PFS) rates were 32.1% and 23% and 18.3% and 13% ( P = .055), respectively. Factors associated with improved OS on multivariable analysis were standard radiation dose, tumor location, institution accrual volume, esophagitis/dysphagia, planning target volume and heart V5. The use of cetuximab conferred no survival benefit at the expense of increased toxicity. The prior signal of benefit in patients with higher H scores was no longer apparent. The progression rate within 1 month of treatment completion in the SD arm was 4.6%. For comparison purposes, the resultant 2-year OS and PFS rates allowing for that dropout rate were 59.6% and 30.7%, respectively, in the SD arms. A 60-Gy radiation dose with concurrent chemotherapy should remain the standard of care, with the OS rate being among the highest reported in the literature for stage III NSCLC. Cetuximab had no effect on OS. The 2-year OS rates in the control arm are similar to the PACIFIC trial.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer.

            Cardiac toxicity is an important sequela of breast radiotherapy. However, the relationship between dose to cardiac structures and subsequent toxicity has not been well defined, partially due to variations in substructure delineation, which can lead to inconsistent dose reporting and the failure to detect potential correlations. Here we have developed a heart atlas and evaluated its effect on contour accuracy and concordance. A detailed cardiac computed tomography scan atlas was developed jointly by cardiology, cardiac radiology, and radiation oncology. Seven radiation oncologists were recruited to delineate the whole heart, left main and left anterior descending interventricular branches, and right coronary arteries on four cases before and after studying the atlas. Contour accuracy was assessed by percent overlap with gold standard atlas volumes. The concordance index was also calculated. Standard radiation fields were applied. Doses to observer-contoured cardiac structures were calculated and compared with gold standard contour doses. Pre- and post-atlas values were analyzed using a paired t test. The cardiac atlas significantly improved contour accuracy and concordance. Percent overlap and concordance index of observer-contoured cardiac and gold standard volumes were 2.3-fold improved for all structures (p < 0.002). After application of the atlas, reported mean doses to the whole heart, left main artery, left anterior descending interventricular branch, and right coronary artery were within 0.1, 0.9, 2.6, and 0.6 Gy, respectively, of gold standard doses. This validated University of Michigan cardiac atlas may serve as a useful tool in future studies assessing cardiac toxicity and in clinical trials which include dose volume constraints to the heart. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A cardiac contouring atlas for radiotherapy

              Background and purpose The heart is a complex anatomical organ and contouring the cardiac substructures is challenging. This study presents a reproducible method for contouring left ventricular and coronary arterial segments on radiotherapy CT-planning scans. Material and methods Segments were defined from cardiology models and agreed by two cardiologists. Reference atlas contours were delineated and written guidelines prepared. Six radiation oncologists tested the atlas. Spatial variation was assessed using the DICE similarity coefficient (DSC) and the directed Hausdorff average distance ( d → H , avg ). The effect of spatial variation on doses was assessed using six different breast cancer regimens. Results The atlas enabled contouring of 15 cardiac segments. Inter-observer contour overlap (mean DSC) was 0.60–0.73 for five left ventricular segments and 0.10–0.53 for ten coronary arterial segments. Inter-observer contour separation (mean d → H , avg ) was 1.5–2.2 mm for left ventricular segments and 1.3–5.1 mm for coronary artery segments. This spatial variation resulted in <1 Gy dose variation for most regimens and segments, but 1.2–21.8 Gy variation for segments close to a field edge. Conclusions This cardiac atlas enables reproducible contouring of segments of the left ventricle and main coronary arteries to facilitate future studies relating cardiac radiation doses to clinical outcomes.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Clin Oncol
                WJCO
                World Journal of Clinical Oncology
                Baishideng Publishing Group Inc
                2218-4333
                24 February 2021
                24 February 2021
                : 12
                : 2
                : 95-102
                Affiliations
                Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States
                Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States
                Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States
                Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States. harish.malhotra@ 123456roswellpark.org
                Author notes

                Author contributions: Farrugia M participated in conceptualization, manual contouring, data analysis, figure construction, writing and editing; Yu H provided statistical support and review; Singh AK was involved in conceptualization and supervision; Malhotra H participated in conceptualization, supervision, software utilization, writing and editing.

                Corresponding author: Harish Malhotra, PhD, Assistant Professor, Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, United States. harish.malhotra@ 123456roswellpark.org

                Article
                jWJCO.v12.i2.pg95
                10.5306/wjco.v12.i2.95
                7918522
                0032660e-c8d9-44a9-807d-1f9622dbe43f
                ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 20 November 2020
                : 7 December 2020
                : 22 December 2020
                Categories
                Basic Study

                autosegmentation,autocontouring,lung cancer,radiation therapy,heart substructures,stereotactic body radiation therapy

                Comments

                Comment on this article