17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nicotinamide-mediated inhibition of SIRT1 deacetylase is associated with the viability of cancer cells exposed to antitumor agents and apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silent mating-type information regulation 2, homolog 1 (SIRT1) represents an NAD +-dependent deacetylase that regulates the processes of stress response and cell survival. However, the functions of SIRT1 in stress- and drug-induced apoptosis remain elusive. The present study was designed to determine the effects of SIRT1 in tumor cells subjected to antitumor agent treatment and to identify the underlying mechanisms during the stress response. Several of the most commonly used antitumor medications [arsenic trioxide (As 2O 3), Taxol and doxorubicin (doxo)] were selected to treat MCF-7 human breast cancer cells with or without nicotinamide (NAM) inhibition. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was used to test cell viability. SIRT1 expression was tested by immunoblot analysis. The typical hallmarks of apoptosis (chromatin condensation, apoptotic bodies, sub G 1 change and Annexin V +/PI stained cells) were detected by Hoechst 33342 staining, flow cytometry and Annexin V +/PI staining following NAM treatment. The cleavage of poly(ADP-ribose) polymerase (PARP) and caspases 9, 6 and 7 was detected through immunoblot analysis. Augmented SIRT1 expression was observed only at low concentrations (>80% cell viability) and the inhibition of SIRT1 deacetylase by NAM decreased the viability of the cancer cells exposed to low concentrations of antitumor agents. NAM induced typical apoptosis in the MCF-7 tumor cells, accompanied by the activation of the caspase cascade. SIRT1 promotes cellular survival at certain stress levels by its deacetylase function. The SIRT1 deacetylase inhibitor, NAM, triggers the activation of the caspase cascade and induces typical apoptosis in MCF-7 cells.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

            Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Negative control of p53 by Sir2alpha promotes cell survival under stress.

              The NAD-dependent histone deacetylation of Sir2 connects cellular metabolism with gene silencing as well as aging in yeast. Here, we show that mammalian Sir2alpha physically interacts with p53 and attenuates p53-mediated functions. Nicotinamide (Vitamin B3) inhibits an NAD-dependent p53 deacetylation induced by Sir2alpha, and also enhances the p53 acetylation levels in vivo. Furthermore, Sir2alpha represses p53-dependent apoptosis in response to DNA damage and oxidative stress, whereas expression of a Sir2alpha point mutant increases the sensitivity of cells in the stress response. Thus, our findings implicate a p53 regulatory pathway mediated by mammalian Sir2alpha. These results have significant implications regarding an important role for Sir2alpha in modulating the sensitivity of cells in p53-dependent apoptotic response and the possible effect in cancer therapy.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                August 2013
                14 June 2013
                14 June 2013
                : 6
                : 2
                : 600-604
                Affiliations
                [1 ]Department of Medical Oncology, China Medical University, Shenyang, Liaoning 11001;
                [2 ]College of Nursing, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
                Author notes
                Correspondence to: Dr Youhong Jiang, Department of Medical Oncology, China Medical University, 92 Beier Road, Heping Qu, Shenyang, Liaoning 11001, P.R. China, E-mail: jiangyouhong2000@ 123456yahoo.com.cn
                Article
                ol-06-02-0600
                10.3892/ol.2013.1400
                3789038
                24137378
                00c40176-237a-41b0-a2be-56a520937f90
                Copyright © 2013, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 27 December 2012
                : 05 June 2013
                Categories
                Articles

                Oncology & Radiotherapy
                sirt1,deacetylase,stress response,nicotinamide,apoptosis
                Oncology & Radiotherapy
                sirt1, deacetylase, stress response, nicotinamide, apoptosis

                Comments

                Comment on this article