6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice.

          Methods

          A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery.

          Results

          There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice.

          Conclusion

          Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation

          Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy- transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathobiology of neuropathic pain.

            This review deals with physiological and biological mechanisms of neuropathic pain, that is, pain induced by injury or disease of the nervous system. Animal models of neuropathic pain mostly use injury to a peripheral nerve, therefore, our focus is on results from nerve injury models. To make sure that the nerve injury models are related to pain, the behavior was assessed of animals following nerve injury, i.e. partial/total nerve transection/ligation or chronic nerve constriction. The following behaviors observed in such animals are considered to indicate pain: (a) autotomy, i.e. self-attack, assessed by counting the number of wounds implied, (b) hyperalgesia, i.e. strong withdrawal responses to a moderate heat stimulus, (c) allodynia, i.e. withdrawal in response to non-noxious tactile or cold stimuli. These behavioral parameters have been exploited to study the pharmacology and modulation of neuropathic pain. Nerve fibers develop abnormal ectopic excitability at or near the site of nerve injury. The mechanisms include unusual distributions of Na(+) channels, as well as abnormal responses to endogenous pain producing substances and cytokines such as tumor necrosis factor alpha (TNF-alpha). Persistent abnormal excitability of sensory nerve endings in a neuroma is considered a mechanism of stump pain after amputation. Any local nerve injury tends to spread to distant parts of the peripheral and central nervous system. This includes erratic mechano-sensitivity along the injured nerve including the cell bodies in the dorsal root ganglion (DRG) as well as ongoing activity in the dorsal horn. The spread of pathophysiology includes upregulation of nitric oxide synthase (NOS) in axotomized neurons, deafferentation hypersensitivity of spinal neurons following afferent cell death, long-term potentiation (LTP) of spinal synaptic transmission and attenuation of central pain inhibitory mechanisms. In particular, the efficacy of opioids at the spinal level is much decreased following nerve injury. Repeated or prolonged noxious stimulation and the persistent abnormal input following nerve injury activate a number of intracellular second messenger systems, implying phosphorylation by protein kinases, particularly protein kinase C (PKC). Intracellular signal cascades result in immediate early gene (IEG) induction which is considered as the overture of a widespread change in protein synthesis, a general basis for nervous system plasticity. Although these processes of increasing nervous system excitability may be considered as a strategy to compensate functional deficits following nerve injury, its by-product is widespread nervous system sensitization resulting in pain and hyperalgesia. An important sequela of nerve injury and other nervous system diseases such as virus attack is apoptosis of neurons in the peripheral and central nervous system. Apoptosis seems to induce neuronal sensitization and loss of inhibitory systems, and these irreversible processes might be in common to nervous system damage by brain trauma or ischemia as well as neuropathic pain. The cellular pathobiology including apoptosis suggests future strategies against neuropathic pain that emphasize preventive aspects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bax-deficient mice with lymphoid hyperplasia and male germ cell death.

              BAX, a heterodimeric partner of BCL2, counters BCL2 and promotes apoptosis in gain-of-function experiments. A Bax knockout mouse was generated that proved viable but displayed lineage-specific aberrations in cell death. Thymocytes and B cells in this mouse displayed hyperplasia, and Bax-deficient ovaries contained unusual atretic follicles with excess granulosa cells. In contrast, Bax-deficient males were infertile as a result of disordered seminiferous tubules with an accumulation of atypical premeiotic germ cells, but no mature haploid sperm. Multinucleated giant cells and dysplastic cells accompanied massive cell death. Thus, the loss of Bax results in hyperplasia or hypoplasia, depending on the cellular context.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2017
                30 August 2017
                : 10
                : 2079-2087
                Affiliations
                [1 ]State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
                [2 ]Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
                [3 ]Department of Neurology, 1st Hospital of Harbin Medical University, Harbin, People’s Republic of China
                [4 ]Department of Biomedicine, University of Bergen, Bergen, Norway
                Author notes
                Correspondence: Tie-Jun Sten Shi, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway, Tel +47 4539 2855, Email tiejun.shi@ 123456uib.no
                Article
                jpr-10-2079
                10.2147/JPR.S133087
                5587150
                © 2017 Lyu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article