7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. × P. tremuloides Michx.)

      , , ,
      Tree Genetics & Genomes
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR.

          Thermal asymmetric interlaced (TAIL-) PCR is an efficient technique for amplifying insert ends from yeast artificial chromosome (YAC) and P1 clones. Highly specific amplification is achieved without resort to complex manipulations before or after PCR. The adaptation of this method for recovery and mapping of genomic sequences flanking T-DNA insertions in Arabidopsis thaliana is described. Insertion-specific products were amplified from 183 of 190 tested T-DNA insertion lines. Reconstruction experiments indicate that the technique can recover single-copy sequences from genomes as complex as common wheat (1.5 x 10(10) bp). RFLPs were screened using 122 unique flanking sequence probes, and the insertion sites of 26 T-DNA transgenic lines were determined on an RFLP map. These lines, whose mapped T-DNA insertions confer hygromycin resistance, can be used for fine-scale mapping of linked phenotypic loci.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Populus: a model system for plant biology.

            With the completion of the Populus trichocarpa genome sequence and the development of various genetic, genomic, and biochemical tools, Populus now offers many possibilities to study questions that cannot be as easily addressed in Arabidopsis and rice, the two prime model systems of plant biology and genomics. Tree-specific traits such as wood formation, long-term perennial growth, and seasonality are obvious areas of research, but research in other areas such as control of flowering, biotic interactions, and evolution of adaptive traits is enriched by adding a tree to the suite of model systems. Furthermore, the reproductive biology of Populus (a dioeceous wind-pollinated long-lived tree) offers both new possibilities and challenges in the study and analysis of natural genetic and phenotypic variation. The relatively close phylogenetic relationship of Populus to Arabidopsis in the Eurosid clade of Eudicotyledonous plants aids in comparative functional studies and comparative genomics, and has the potential to greatly facilitate studies on genome and gene family evolution in eudicots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics.

              The GABI-Kat population of T-DNA mutagenized Arabidopsis thaliana lines with sequence-characterized insertion sites is used extensively for efficient progress in plant functional genomics. Here we provide details about the establishment of the material, demonstrate the population's functionality and discuss results from quality control studies. T-DNA insertion mutants of the accession Columbia (Col-0) were created by Agrobacterium tumefaciens-mediated transformation. To allow selection of transformed plants under greenhouse conditions, a sulfadiazine resistance marker was employed. DNA from leaves of T1 plants was extracted and used as a template for PCR-based amplification of DNA fragments spanning insertion site borders. After sequencing, the data were placed in a flanking sequence tag (FST) database describing which mutant allele was present in which line. Analysis of the distribution of T-DNA insertions revealed a clear bias towards intergenic regions. Insertion sites appeared more frequent in regions in front of the ATG and after STOP codons of predicted genes. Segregation analysis for sulfadiazine resistance showed that 62% of the transformants contain an insertion at only one genetic locus. In quality control studies with gene-specific primers in combination with T-DNA primers, 76% of insertions could be confirmed. Finally, the functionality of the GABI-Kat population was demonstrated by exemplary confirmation of several new transparent testa alleles, as well as a number of other mutants, which were identified on the basis of the FST data.
                Bookmark

                Author and article information

                Journal
                Tree Genetics & Genomes
                Tree Genetics & Genomes
                Springer Nature
                1614-2942
                1614-2950
                February 2010
                September 2009
                : 6
                : 2
                : 205-217
                Article
                10.1007/s11295-009-0241-x
                014409cc-c22a-4b7b-93a2-d1d84d5c7572
                © 2010
                History

                Comments

                Comment on this article