Co-crystals have garnered increasing interest in recent years as a beneficial approach to improving the solubility of poorly water soluble active pharmaceutical ingredients (APIs). However, their preparation is a challenge that requires a simple approach towards co-crystal detection. The objective of this work was, therefore, to verify to what extent a multivariate statistical approach such as principal component analysis (PCA) and cluster analysis (CA) can be used as a supporting tool for detecting co-crystal formation. As model samples, physical mixtures and co-crystals of indomethacin with saccharin and furosemide with p-aminobenzoic acid were prepared at API/co-former molar ratios 1:1, 2:1 and 1:2. Data acquired from DSC curves and FTIR and Raman spectroscopies were used for CA and PCA calculations. The results obtained revealed that the application of physical mixtures as reference samples allows a deeper insight into co-crystallization than is possible with the use of API and co-former or API and co-former with physical mixtures. Thus, multivariate matrix for PCA and CA calculations consisting of physical mixtures and potential co-crystals could be considered as the most profitable and reliable way to reflect changes in samples after co-crystallization. Moreover, complementary interpretation of results obtained using DSC, FTIR and Raman techniques is most beneficial.