4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria

      1 , 2 , 2 ,   3 , 2 , 2 , 3 , 1 , 3
      Microbiology
      Microbiology Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial persistence as a phenotypic switch.

          A fraction of a genetically homogeneous microbial population may survive exposure to stress such as antibiotic treatment. Unlike resistant mutants, cells regrown from such persistent bacteria remain sensitive to the antibiotic. We investigated the persistence of single cells of Escherichia coli with the use of microfluidic devices. Persistence was linked to preexisting heterogeneity in bacterial populations because phenotypic switching occurred between normally growing cells and persister cells having reduced growth rates. Quantitative measurements led to a simple mathematical description of the persistence switch. Inherent heterogeneity of bacterial populations may be important in adaptation to fluctuating environments and in the persistence of bacterial infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            (p)ppGpp: still magical?

            The fundamental details of how nutritional stress leads to elevating (p)ppGpp are questionable. By common usage, the meaning of the stringent response has evolved from the specific response to (p)ppGpp provoked by amino acid starvation to all responses caused by elevating (p)ppGpp by any means. Different responses have similar as well as dissimilar positive and negative effects on gene expression and metabolism. The different ways that different bacteria seem to exploit their capacities to form and respond to (p)ppGpp are already impressive despite an early stage of discovery. Apparently, (p)ppGpp can contribute to regulation of many aspects of microbial cell biology that are sensitive to changing nutrient availability: growth, adaptation, secondary metabolism, survival, persistence, cell division, motility, biofilms, development, competence, and virulence. Many basic questions still exist. This review tries to focus on some issues that linger even for the most widely characterized bacterial strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence.

              It was demonstrated previously that abrupt transfer of vigorously aerated cultures of Mycobacterium tuberculosis to anaerobic conditions resulted in their rapid death, but gradual depletion of available O2 permitted expression of increased tolerance to anaerobiosis. Those studies used a model based on adaptation of unagitated bacilli as they settled through a self-generated O2 gradient, but the model did not permit examination of homogeneous populations of bacilli during discrete stages in that adaptation. The present report describes a model based on culture of tubercle bacilli in deep liquid medium with very gentle stirring that keeps them in uniform dispersion while controlling the rate at which O2 is depleted. In this model, at least two stages of nonreplicating persistence were seen. The shift into first stage, designated NRP stage 1, occurred abruptly at a point when the declining dissolved O2 level approached 1% saturation. This microaerophilic stage was characterized by a slow rate of increase in turbidity without a corresponding increase in numbers of CFU or synthesis of DNA. However, a high rate of production of glycine dehydrogenase was initiated and sustained while the bacilli were in this state, and a steady ATP concentration was maintained. When the dissolved O2 content of the culture dropped below about 0.06% saturation, the bacilli shifted down abruptly to an anaerobic stage, designated NRP stage 2, in which no further increase in turbidity was seen and the concentration of glycine dehydrogenase declined markedly. The ability of bacilli in NRP stage 2 to survive anaerobically was dependent in part on having spent sufficient transit time in NRP stage 1. The effects of four antimicrobial agents on the bacilli depended on which of the different physiologic stages the bacilli occupied at a given time and reflected the recognized modes of action of these agents. It is suggested that the ability to shift down into one or both of the two nonreplicating stages, corresponding to microaerophilic and anaerobic persistence, is responsible for the ability of tubercle bacilli to lie dormant in the host for long periods of time, with the capacity to revive and activate disease at a later time. The model described here holds promise as a tool to help clarify events at the molecular level that permit the bacilli to persist under adverse conditions and to resume growth when conditions become favorable. The culture model presented here is also useful for screening drugs for the ability to kill tubercle bacilli in their different stages of nonreplicating persistence.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Microbiology
                Microbiology Society
                1350-0872
                1465-2080
                February 01 2021
                February 01 2021
                : 167
                : 2
                Affiliations
                [1 ] Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
                [2 ] Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
                [3 ] Department of Biomedical Sciences, University at Albany, Albany, NY, USA
                Article
                10.1099/mic.0.001035
                33555244
                01b8effd-ce6e-4c01-9f3d-152e4fb9d4cc
                © 2021
                History

                Comments

                Comment on this article