14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Substitution Effects on the Photoinduced Charge-Transfer Properties of Novel Perylene-3,4,9,10-tetracarboxylic Acid Derivatives

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report here the synthesis and photophysical study of a series of electron donor–acceptor molecules, in which electron-donating 4-methoxyphenoxy groups are attached to the 1,7-bay positions of four different perylene tetracarboxylic acid derivatives, namely, perylene tetraesters 1, perylene monoimide diesters 2, perylene bisimides 3, and perylene monobenzimidazole monoimides 4. These perylene derivatives are used because of their increasing order of electron-accepting capability upon moving from 1 to 4. Two additional donor–acceptor molecules are synthesized by linking electron-donating 4-methoxyphenyl groups to the imide position of perylene monoimide diester 2 and perylene bisimide 3. The motivation for this study is to achieve a good control over the photoinduced charge-transfer (CT) process in perylene-based systems by altering the position of electron donors and tuning the electron deficiency of perylene core. A comprehensive study of the photophysical properties of these molecules has shown a highly systematic trend in the magnitude of CT as a function of increased electron deficiency of the perylene core and solvent polarity. Importantly, just by changing the attachment of electron-donating group from “bay” to “imide” position, we are able to block the CT process. This implies that the positioning of the electron donor at the perylene core strongly influences the kinetics of the photoinduced CT process. In these compounds, the CT process is characterized by the quenching of fluorescence and singlet excited-state lifetimes as compared to model compounds bearing non-electron-donating 4- tert-butylphenoxy groups. Transient absorption spectroscopy did not reveal spectra of CT states. This most likely implies that the CT state is not accumulated, because of the faster charge recombination.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Measurement of photoluminescence quantum yields. Review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solar fuels via artificial photosynthesis.

            Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge-separated state to the point that catalysts can use the stored energy for fuel production. Antenna systems, employing a variety of chromophores that absorb light throughout the visible spectrum, have been coupled to artificial reaction centers and have incorporated control and photoprotective processes borrowed from photosynthesis. Thus far, researchers have not discovered practical solar-driven catalysts for water oxidation and fuel production that are robust and use earth-abundant elements, but they have developed artificial systems that use sunlight to produce fuel in the laboratory. For example, artificial reaction centers, where electrons are injected from a dye molecule into the conduction band of nanoparticulate titanium dioxide on a transparent electrode, coupled to catalysts, such as platinum or hydrogenase enzymes, can produce hydrogen gas. Oxidizing equivalents from such reaction centers can be coupled to iridium oxide nanoparticles, which can oxidize water. This system uses sunlight to split water to oxygen and hydrogen fuel, but efficiencies are low and an external electrical potential is required. Although attempts at artificial photosynthesis fall short of the efficiencies necessary for practical application, they illustrate that solar fuel production inspired by natural photosynthesis is achievable in the laboratory. More research will be needed to identify the most promising artificial photosynthetic systems and realize their potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures.

              Perylene bisimide dyes and their organization into supramolecular architectures through hydrogen-bonding, metal ion coordination and pi-pi-stacking is discussed; further self-assembly leading to nano- and meso-scopic structures and liquid-crystalline compounds is also addressed.
                Bookmark

                Author and article information

                Journal
                J Phys Chem A
                J Phys Chem A
                jx
                jpcafh
                The Journal of Physical Chemistry. a
                American Chemical Society
                1089-5639
                1520-5215
                30 May 2017
                22 June 2017
                : 121
                : 24
                : 4633-4644
                Affiliations
                [1] Laboratory of Optoelectronic Materials and Laboratory of Organic Materials & Interfaces Department of Chemical Engineering, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
                Author notes
                [* ]E-mail: W.F.Jager@ 123456tudelft.nl . (W.F.J.)
                [* ]E-mail: F.C.Grozema@ 123456tudelft.nl . (F.C.G.)
                Article
                10.1021/acs.jpca.7b03806
                5483891
                28558214
                01fdf233-1444-41b5-beab-622dcddfad18
                Copyright © 2017 American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 23 April 2017
                Categories
                Article
                Custom metadata
                jp7b03806
                jp-2017-03806e

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article