0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovery of a shock-compressed magnetic field in the north-western rim of the young supernova remnant RX J1713.7-3946 with X-ray polarimetry

      Preprint
      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supernova remnants (SNRs) provide insights into cosmic-ray acceleration and magnetic field dynamics at shock fronts. Recent X-ray polarimetric measurements by the Imaging X-ray Polarimetry Explorer (IXPE) have revealed radial magnetic fields near particle acceleration sites in young SNRs, including Cassiopeia A, Tycho, and SN 1006. We present here the spatially-resolved IXPE X-ray polarimetric observation of the northwestern rim of SNR RX J1713.7-3946. For the first time, our analysis shows that the magnetic field in particle acceleration sites of this SNR is oriented tangentially with respect to the shock front. Because of the lack of precise Faraday-rotation measurements in the radio band, this was not possible before. The average measured polarization degree (PD) of the synchtrotron emission is 12.5 {\pm} 3.3%, lower than the one measured by IXPE in SN 1006, comparable to the Tycho one, but notably higher than the one in Cassiopeia A. On sub-parsec scales, localized patches within RX J1713.7-3946 display PD up to 41.5 {\pm} 9.5%. These results are compatible with a shock-compressed magnetic field. However, in order to explain the observed PD, either the presence of a radial net magnetic field upstream of the shock, or partial reisotropization of the turbulence downstream by radial magneto-hydrodynamical instabilities, can be invoked. From comparison of PD and magnetic field distribution with {\gamma}-rays and 12 CO data, our results provide new inputs in favor of a leptonic origin of the {\gamma}-ray emission.

          Related collections

          Author and article information

          Journal
          13 May 2024
          Article
          2405.07577
          02252478-4302-4398-a091-6963a1b87d1c

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          Accepted for publication on ApJ Letters
          astro-ph.HE astro-ph.GA

          Galaxy astrophysics,High energy astrophysical phenomena
          Galaxy astrophysics, High energy astrophysical phenomena

          Comments

          Comment on this article