14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Isochorismate synthase is required to synthesize salicylic acid for plant defence.

          Salicylic acid (SA) mediates plant defences against pathogens, accumulating in both infected and distal leaves in response to pathogen attack. Pathogenesis-related gene expression and the synthesis of defensive compounds associated with both local and systemic acquired resistance (LAR and SAR) in plants require SA. In Arabidopsis, exogenous application of SA suffices to establish SAR, resulting in enhanced resistance to a variety of pathogens. However, despite its importance in plant defence against pathogens, SA biosynthesis is not well defined. Previous work has suggested that plants synthesize SA from phenylalanine; however, SA could still be produced when this pathway was inhibited, and the specific activity of radiolabelled SA in feeding experiments was often lower than expected. Some bacteria such as Pseudomonas aeruginosa synthesize SA using isochorismate synthase (ICS) and pyruvate lyase. Here we show, by cloning and characterizing an Arabidopsis defence-related gene (SID2) defined by mutation, that SA is synthesized from chorismate by means of ICS, and that SA made by this pathway is required for LAR and SAR responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systemic acquired resistance: turning local infection into global defense.

            Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis

              Gene Ontology (GO) analysis has become a commonly used approach for functional studies of large-scale genomic or transcriptomic data. Although there have been a lot of software with GO-related analysis functions, new tools are still needed to meet the requirements for data generated by newly developed technologies or for advanced analysis purpose. Here, we present a Gene Ontology Enrichment Analysis Software Toolkit (GOEAST), an easy-to-use web-based toolkit that identifies statistically overrepresented GO terms within given gene sets. Compared with available GO analysis tools, GOEAST has the following improved features: (i) GOEAST displays enriched GO terms in graphical format according to their relationships in the hierarchical tree of each GO category (biological process, molecular function and cellular component), therefore, provides better understanding of the correlations among enriched GO terms; (ii) GOEAST supports analysis for data from various sources (probe or probe set IDs of Affymetrix, Illumina, Agilent or customized microarrays, as well as different gene identifiers) and multiple species (about 60 prokaryote and eukaryote species); (iii) One unique feature of GOEAST is to allow cross comparison of the GO enrichment status of multiple experiments to identify functional correlations among them. GOEAST also provides rigorous statistical tests to enhance the reliability of analysis results. GOEAST is freely accessible at http://omicslab.genetics.ac.cn/GOEAST/
                Bookmark

                Author and article information

                Journal
                J Integr Plant Biol
                J Integr Plant Biol
                10.1111/(ISSN)1744-7909
                JIPB
                Journal of Integrative Plant Biology
                John Wiley and Sons Inc. (Hoboken )
                1672-9072
                1744-7909
                24 July 2015
                January 2016
                : 58
                : 1 ( doiID: 10.1111/jipb.v58.1 )
                : 91-103
                Affiliations
                [ 1 ] Key Laboratory of Photobiology Institute of Botanythe Chinese Academy of Sciences Beijing 100093China
                [ 2 ] Key Laboratory of Plant Molecular Physiology Institute of Botanythe Chinese Academy of Sciences Beijing 100093China
                [ 3 ] Biotechnology Research Institutethe Chinese Academy of Agricultural Sciences Beijing 100081China
                [ 4 ]National Center for Plant Gene Research Beijing 100093China
                Author notes
                [*] [* ] Correspondence: rclin@ 123456ibcas.ac.cn

                Article
                JIPB12369
                10.1111/jipb.12369
                4736690
                25989254
                026b0335-3040-4c2d-ab1c-bab5b2950eaf
                © The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 27 March 2015
                : 15 May 2015
                Page count
                Pages: 13
                Categories
                Research Article
                Research Articles
                Plant‐environmental Interactions
                Custom metadata
                2.0
                jipb12369
                January 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.7.6 mode:remove_FC converted:01.02.2016

                arabidopsis,chlorophyll biosynthesis,far1,fhy3,light signaling,plant immunity,salicylic acid

                Comments

                Comment on this article