2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of β-lactamase-mediated cefiderocol resistance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cefiderocol is a novel siderophore β-lactam with improved hydrolytic stability toward β-lactamases, including carbapenemases, achieved by combining structural moieties of two clinically efficient cephalosporins, ceftazidime and cefepime. Consequently, cefiderocol represents a treatment alternative for infections caused by MDR Gram-negatives.

          Objectives

          To study the role of cefiderocol on resistance development and on the evolution of β-lactamases from all Ambler classes, including KPC-2, CTX-M-15, NDM-1, CMY-2 and OXA-48.

          Methods

          Directed evolution, using error-prone PCR followed by selective plating, was utilized to investigate how the production and the evolution of different β-lactamases cause changes in cefiderocol susceptibility determined using microbroth dilution assays (MIC and IC 50).

          Results

          We found that the expression of bla OXA-48 did not affect cefiderocol susceptibility. On the contrary, the expression of bla KPC-2, bla CMY-2, bla CTX-M-15 and bla NDM-1 substantially reduced cefiderocol susceptibility by 4-, 16-, 8- and 32-fold, respectively. Further, directed evolution on these enzymes showed that, with the acquisition of only 1–2 non-synonymous mutations, all β-lactamases were evolvable to further cefiderocol resistance by 2- (NDM-1, CTX-M-15), 4- (CMY-2), 8- (OXA-48) and 16-fold (KPC-2). Cefiderocol resistance development was often associated with collateral susceptibility changes including increased resistance to ceftazidime and ceftazidime/avibactam as well as functional trade-offs against different β-lactam drugs.

          Conclusions

          The expression of contemporary β-lactamase genes can potentially contribute to cefiderocol resistance development and the acquisition of mutations in these genes results in enzymes adapting to increasing cefiderocol concentrations. Resistance development caused clinically important cross-resistance, especially against ceftazidime and ceftazidime/avibactam.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deciphering key features in protein structures with the new ENDscript server

            ENDscript 2 is a friendly Web server for extracting and rendering a comprehensive analysis of primary to quaternary protein structure information in an automated way. This major upgrade has been fully re-engineered to enhance speed, accuracy and usability with interactive 3D visualization. It takes advantage of the new version 3 of ESPript, our well-known sequence alignment renderer, improved to handle a large number of data with reduced computation time. From a single PDB entry or file, ENDscript produces high quality figures displaying multiple sequence alignment of proteins homologous to the query, colored according to residue conservation. Furthermore, the experimental secondary structure elements and a detailed set of relevant biophysical and structural data are depicted. All this information and more are now mapped on interactive 3D PyMOL representations. Thanks to its adaptive and rigorous algorithm, beginner to expert users can modify settings to fine-tune ENDscript to their needs. ENDscript has also been upgraded as an open platform for the visualization of multiple biochemical and structural data coming from external biotool Web servers, with both 2D and 3D representations. ENDscript 2 and ESPript 3 are freely available at http://endscript.ibcp.fr and http://espript.ibcp.fr, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AmpC beta-lactamases.

              AmpC beta-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and beta-lactamase inhibitor-beta-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal bla(AmpC) gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum beta-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC beta-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).
                Bookmark

                Author and article information

                Contributors
                Journal
                J Antimicrob Chemother
                J Antimicrob Chemother
                jac
                Journal of Antimicrobial Chemotherapy
                Oxford University Press
                0305-7453
                1460-2091
                September 2022
                11 July 2022
                11 July 2022
                : 77
                : 9
                : 2429-2436
                Affiliations
                Department of Chemistry, UiT The Arctic University of Norway , Tromsø, Norway
                Department of Pharmacy, UiT The Arctic University of Norway , Tromsø, Norway
                Michael Smith Laboratories, University of British Columbia , Vancouver, BC, Canada
                Department of Pharmacy, UiT The Arctic University of Norway , Tromsø, Norway
                Department of Pharmacy, UiT The Arctic University of Norway , Tromsø, Norway
                Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway , Tromsø, Norway
                Author notes
                Corresponding author. E-mail: christopher.frohlich@ 123456uit.no
                Author information
                https://orcid.org/0000-0003-2682-2267
                https://orcid.org/0000-0002-5525-2614
                Article
                dkac221
                10.1093/jac/dkac221
                9410664
                35815680
                030292b0-ec31-4fe1-a1ef-ec418641b83b
                © The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 11 February 2022
                : 03 June 2022
                Page count
                Pages: 8
                Funding
                Funded by: UiT The Arctic University of Norway, doi 10.13039/100007465;
                Funded by: Northern Norway Regional Health Authority, doi 10.13039/501100007137;
                Award ID: SFP1292-16
                Award ID: HNF1586-21
                Award ID: JPI-EC-AMR
                Funded by: The National Graduate School in Biocatalysis;
                Funded by: The Norwegian PhD School of Pharmacy;
                Funded by: The Graduate School in Infection Biology and Antimicrobials;
                Categories
                Original Research
                AcademicSubjects/MED00740
                AcademicSubjects/MED00290
                AcademicSubjects/MED00230

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article