5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          Cellulose: fascinating biopolymer and sustainable raw material.

          As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biomaterials & scaffolds for tissue engineering

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in bone tissue engineering scaffolds.

              Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                April 2021
                April 2021
                : 175
                : 495-515
                Article
                10.1016/j.ijbiomac.2021.01.196
                33539959
                0397bd48-3639-48a2-ba89-1c12d91fba4f
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article