1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Painting of Arabidopsis Chromosomes with Chromosome-Specific BAC Clones : Painting of Arabidopsis Chromosomes with BAC Clones

      1 , 1
      Current Protocols in Plant Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d150965e59">Chromosome painting (CP) refers to fluorescence in situ hybridization (FISH) of chromosome-specific DNA probes to identify large chromosome regions, chromosome arms, and whole chromosomes. For CP and CCP (comparative chromosome painting) in plants, most often, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the species of origin or a related species are used as painting probes. CP enables visualization and tracing of particular chromosome regions and/or chromosomes throughout all mitotic and meiotic stages as well as the corresponding interphase chromosome territories. CCP enables identification of large-scale homeologous chromosome regions and chromosomes shared among two or more species. Here, a step-by-step protocol for carrying out CP in Arabidopsis thaliana (Arabidopsis) and CCP in other crucifer taxa based on the use of Arabidopsis chromosome-specific BAC contigs is described. © 2016 by John Wiley &amp; Sons, Inc. </p>

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of the genome sequence of the flowering plant Arabidopsis thaliana

          The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome territories, nuclear architecture and gene regulation in mammalian cells.

            The expression of genes is regulated at many levels. Perhaps the area in which least is known is how nuclear organization influences gene expression. Studies of higher-order chromatin arrangements and their dynamic interactions with other nuclear components have been boosted by recent technical advances. The emerging view is that chromosomes are compartmentalized into discrete territories. The location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing. This view is consistent with a topological model for gene regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes.

              Differential painting of all five chromosome pairs of Arabidopsis thaliana revealed for the first time the interphase chromosome arrangement in a euploid plant. Side-by-side arrangement of heterologous chromosome territories and homologous association of chromosomes 1, 3 and 5 (on average in 35-50% of nuclei) are in accordance with the random frequency predicted by computer simulations. Only the nucleolus organizing region (NOR)-bearing chromosome 2 and 4 homologs associate more often than randomly, since NORs mostly attach to a single nucleolus. Somatic pairing of homologous approximately 100 kb segments occurs less frequently than homolog association, not significantly more often than expected at random and not simultaneously along the homologs. Thus, chromosome arrangement in Arabidopsis differs from that in Drosophila (characterized by somatic pairing of homologs), in spite of similar genome size, sequence organization and chromosome number. Nevertheless, in up to 31.5% of investigated Arabidopsis nuclei allelic sequences may share positions close enough for homologous recombination.
                Bookmark

                Author and article information

                Journal
                Current Protocols in Plant Biology
                Current Protocols in Plant Biology
                Wiley
                23798068
                March 2016
                March 2016
                June 10 2016
                : 1
                : 2
                : 359-371
                Affiliations
                [1 ]Central European Institute of Technology (CEITEC), Masaryk University; Czech Republic
                Article
                10.1002/cppb.20022
                30775864
                03a1ce8f-350e-49e7-ae1b-564e4920902b
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article