37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-Immune Strategies of Pathogenic Fungi

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.

          Related collections

          Most cited references243

          • Record: found
          • Abstract: found
          • Article: not found

          Role of target geometry in phagocytosis.

          Phagocytosis is a principal component of the body's innate immunity in which macrophages internalize targets in an actin-dependent manner. Targets vary widely in shape and size and include particles such as pathogens and senescent cells. Despite considerable progress in understanding this complicated process, the role of target geometry in phagocytosis has remained elusive. Previous studies on phagocytosis have been performed using spherical targets, thereby overlooking the role of particle shape. Using polystyrene particles of various sizes and shapes, we studied phagocytosis by alveolar macrophages. We report a surprising finding that particle shape, not size, plays a dominant role in phagocytosis. All shapes were capable of initiating phagocytosis in at least one orientation. However, the local particle shape, measured by tangent angles, at the point of initial contact dictates whether macrophages initiate phagocytosis or simply spread on particles. The local shape determines the complexity of the actin structure that must be created to initiate phagocytosis and allow the membrane to move over the particle. Failure to create the required actin structure results in simple spreading and not internalization. Particle size primarily impacts the completion of phagocytosis in cases where particle volume exceeds the cell volume.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Candidalysin is a fungal peptide toxin critical for mucosal infection

            Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Until now human pathogenic fungi were not known to possess such toxins. Here we identify the first fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signaling pathway and activates epithelial immunity. Toxin-mediated membrane permeabilization is enhanced by a positively charged C-terminus and triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name ‘Candidalysin’ for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocyte-mediated defense against microbial pathogens.

              Circulating blood monocytes supply peripheral tissues with macrophage and dendritic cell (DC) precursors and, in the setting of infection, also contribute directly to immune defense against microbial pathogens. In humans and mice, monocytes are divided into two major subsets that either specifically traffic into inflamed tissues or, in the absence of overt inflammation, constitutively maintain tissue macrophage/DC populations. Inflammatory monocytes respond rapidly to microbial stimuli by secreting cytokines and antimicrobial factors, express the CCR2 chemokine receptor, and traffic to sites of microbial infection in response to monocyte chemoattractant protein (MCP)-1 (CCL2) secretion. In murine models, CCR2-mediated monocyte recruitment is essential for defense against Listeria monocytogenes, Mycobacterium tuberculosis, Toxoplasma gondii, and Cryptococcus neoformans infection, implicating inflammatory monocytes in defense against bacterial, protozoal, and fungal pathogens. Recent studies indicate that inflammatory monocyte recruitment to sites of infection is complex, involving CCR2-mediated emigration of monocytes from the bone marrow into the bloodstream, followed by trafficking into infected tissues. The in vivo mechanisms that promote chemokine secretion, monocyte differentiation and trafficking, and finally monocyte-mediated microbial killing remain active and important areas of investigation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                15 November 2016
                2016
                : 6
                : 142
                Affiliations
                Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
                Author notes

                Edited by: Michail Lionakis, National Institute of Allergy and Infectious Diseases, USA

                Reviewed by: Georgios Chamilos, University of Crete, Greece; Michal Adam Olszewski, University of Michigan, USA

                *Correspondence: Ana M. Fusco-Almeida almeidaf@ 123456fcfar.unesp.br
                Article
                10.3389/fcimb.2016.00142
                5108756
                26913242
                03dc2552-0c7f-4926-8d68-cdaca67856d3
                Copyright © 2016 Marcos, de Oliveira, de Melo, da Silva, Assato, Scorzoni, Rossi, de Paula e Silva, Mendes-Giannini and Fusco-Almeida.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 July 2016
                : 13 October 2016
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 279, Pages: 22, Words: 19596
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo 10.13039/501100001807
                Award ID: 2015/03700-9
                Award ID: 2015/14023-8
                Award ID: 2013/10917-9
                Categories
                Microbiology
                Review

                Infectious disease & Microbiology
                pathogenic fungi,immune response,host-pathogen interaction,fungal immune evasion mechanisms,fungal infection

                Comments

                Comment on this article