4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Low-dose X-ray-stimulated LaGaO3:Sb,Cr near-infrared persistent luminescence nanoparticles for deep-tissue and renewable in vivo bioimaging

      , , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of X-ray photons by solution-processed lead halide perovskites

          The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH 3 NH 3 PbI 3 ) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGy air -1 cm -3 ) and responsivity (1.9×10 4 carriers/photon), which are commensurate with those obtained by the current solid-state technology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular afterglow imaging with bright, biodegradable polymer nanoparticles

            Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, afterglow imaging has been limited by its reliance on inorganic nanoparticles with relatively low brightness and short-near-infrared (NIR) emission. Here we present semiconducting polymer nanoparticles (SPNs) <40 nm in diameter that store photon energy via chemical defects and emit long-NIR afterglow luminescence at 780 nm with a half-life of ∼6 min. In vivo, the afterglow intensity of SPNs is more than 100-fold brighter than that of inorganic afterglow agents, and the signal is detectable through the body of a live mouse. High-contrast lymph node and tumor imaging in living mice is demonstrated with a signal-to-background ratio up to 127-times higher than that obtained by NIR fluorescence imaging. Moreover, we developed an afterglow probe, activated only in the presence of biothiols, for early detection of drug-induced hepatotoxicity in living mice.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury

                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                January 2021
                January 2021
                : 404
                : 127133
                Article
                10.1016/j.cej.2020.127133
                0465d8a7-43a6-46cb-8b17-127b51694606
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article