12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene ( SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene ( SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor.

          Methods

          Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC), the Hammersmith Functional Motor Scale (HFMS), and the Barthel Index.

          Results

          After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period.

          Conclusion

          Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease.

          Trial Registration

          ClinicalTrials.gov: NCT01033331

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients.

          We analyzed clinical data of 569 patients in two combined series with childhood and juvenile proximal SMA. This cohort included only patients who had achieved the ability to sit unaided (type II and III SMA). The survival rate among 240 type II patients (who sat but never walked) was 98.5% at 5 years and 68.5% at 25 years. SMA III (n = 329) (those who walked and had symptoms before age 30 years) was subdivided into those with an onset before and after age 3 years (type IIIa, n = 195; SMA IIIb, n = 134). In patients with SMA III, life expectancy is not significantly less than a normal population. The probabilities of being able to walk at 10 years after onset was 70.3%, and at 40 years, 22.0% in SMA IIa. For SMA IIIb, 96.7% were walking 10 years after onset and 58.7% at 40 years. The subdivision of type III SMA was justified by the probability of being ambulatory depending on age at onset; the prognosis differed for those with onset before or after age 3 years. The data provide a reliable basis of the natural history of proximal SMA and support a classification system that is based primarily on age at onset and the achievement of motor milestones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy.

            Proximal spinal muscular atrophy (SMA) is a common neuromuscular disorder causing infant death in half of all patients. Homozygous absence of the survival motor neuron gene (SMN1) is the primary cause of SMA, while SMA severity is mainly determined by the number of SMN2 copies. One SMN2 copy produces only about 10% of full-length protein identical to SMN1, whereas the majority of SMN2 transcripts is aberrantly spliced due to a silent mutation within an exonic splicing enhancer in exon 7. However, correct splicing can be restored by over-expression of the SR-like splicing factor Htra2-beta 1. We show that in fibroblast cultures derived from SMA patients treated with therapeutic doses (0.5-500 microM) of valproic acid (VPA), the level of full-length SMN2 mRNA/protein increased 2- to 4-fold. Importantly, this up-regulation of SMN could be most likely attributed to increased levels of Htra2-beta 1 which facilitates the correct splicing of SMN2 RNA as well as to an SMN gene transcription activation. Especially at low VPA concentrations, the restored SMN level depended on the number of SMN2 copies. Moreover, VPA was able to increase SMN protein levels through transcription activation in organotypic hippocampal brain slices from rats. Finally, VPA also increased the expression of further SR proteins, which may have important implications for other disorders affected by alternative splicing. Since VPA is a drug highly successfully used in long-term epilepsy therapy, our findings open the exciting perspective for a first causal therapy of an inherited disease by elevating the SMN2 transcription level and restoring its correct splicing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carnitine in the treatment of valproic acid-induced toxicity.

              Valproic acid (VPA) is a broad-spectrum antiepileptic drug that is now used commonly for several other neurological and psychiatric indications. VPA is usually well tolerated, but serious complications, including hepatotoxicity and hyperammonemic encephalopathy, may occur. These complications may also arise following acute VPA overdose, the incidence of which is increasing. Intoxication usually only results in mild central nervous system depression, but serious toxicity and death have been reported. As a branched chain carboxylic acid, VPA is extensively metabolized by the liver via glucuronic acid conjugation, mitochondrial beta- and cytosolic omega-oxidation to produce multiple metabolites, some of which may be involved in its toxicity. Carnitine is an amino acid derivative that is an essential cofactor in the beta-oxidation of fatty acids. It is synthesized endogenously from the essential amino acids, methionine and lysine. VPA inhibits the biosynthesis of carnitine by decreasing the concentration of alpha-ketoglutarate and may contribute to carnitine deficiency. It is postulated that carnitine supplementation may increase the beta-oxidation of VPA, thereby limiting cytosolic omega-oxidation and the production of toxic metabolites that are involved in liver toxicity and ammonia accumulation. VPA-induced hepatotoxicity and hyperammonemic encephalopathy may be promoted either by a pre-existing carnitine deficiency or by deficiency induced by VPA per se. Some experimental and clinical data suggest that early intravenous supplementation with l-carnitine could improve survival in severe VPA-induced hepatotoxicity. Carnitine administration has been shown to speed the decrease of ammonemia in patients with VPA-induced encephalopathy although a correlation between ammonia concentrations and the clinical condition was not always observed. As it does not appear to be harmful, l-carnitine is commonly recommended in severe VPA poisoning, especially in children, although the clinical benefit in terms of liver protection or hastening of recovery from unconsciousness has not been established clearly. Prophylactic carnitine supplementation is also advocated during VPA therapy in high-risk pediatric patients. Further controlled, randomized, and probably multicenter trials are required to better delineate the therapeutic and prophylactic roles of l-carnitine and the optimal regimen of administration in the management of VPA toxicity.
                Bookmark

                Author and article information

                Journal
                BMC Neurol
                BMC Neurology
                BioMed Central
                1471-2377
                2011
                24 March 2011
                : 11
                : 36
                Affiliations
                [1 ]Department of Neurology, Medical School of the University of São Paulo, São Paulo, Brazil
                [2 ]Neuromuscular Section, Associação de Assistência à Criança Deficiente, São Paulo, Brazil
                Article
                1471-2377-11-36
                10.1186/1471-2377-11-36
                3078847
                21435220
                04ee2ab3-980a-4452-ba52-0ba470a2631c
                Copyright ©2011 Darbar et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 February 2010
                : 24 March 2011
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article