42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complexity in Strongly Correlated Electronic Systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials, have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions -- spin, charge, lattice, and/or orbital -- are simultaneously active. This phenomenon causes interesting effects, such as colossal magnetoresistance, and it also appears crucial to understand the high temperature superconductors. The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems. This electronic complexity could have potential consequences for applications of correlated electronic materials, because not only charge (semiconducting electronic), or charge and spin (spintronics) are of relevance, but in addition the lattice and orbital degrees of freedom are active, leading to giant responses to small perturbations. Moreover, several metallic and insulating phases compete, increasing the potential for novel behavior.

          Related collections

          Author and article information

          Journal
          01 September 2005
          Article
          10.1126/science.1107559
          cond-mat/0509041
          05281d9e-7982-46b2-a47e-4f53ac72c6d3
          History
          Custom metadata
          Science 309, 257 (2005)
          cond-mat.str-el

          Comments

          Comment on this article