91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Islet β cell mass in diabetes and how it relates to function, birth, and death

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In type 1 diabetes (T1D) β cell mass is markedly reduced by autoimmunity. Type 2 diabetes (T2D) results from inadequate β cell mass and function that can no longer compensate for insulin resistance. The reduction of β cell mass in T2D may result from increased cell death and/or inadequate birth through replication and neogenesis. Reduction in mass allows glucose levels to rise, which places β cells in an unfamiliar hyperglycemic environment, leading to marked changes in their phenotype and a dramatic loss of glucose-stimulated insulin secretion (GSIS), which worsens as glucose levels climb. Toxic effects of glucose on β cells (glucotoxicity) appear to be the culprit. This dysfunctional insulin secretion can be reversed when glucose levels are lowered by treatment, a finding with therapeutic significance. Restoration of β cell mass in both types of diabetes could be accomplished by either β cell regeneration or transplantation. Learning more about the relationships between β cell mass, turnover, and function and finding ways to restore β cell mass are among the most urgent priorities for diabetes research.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure.

          Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo reprogramming of adult pancreatic exocrine cells to beta-cells.

            One goal of regenerative medicine is to instructively convert adult cells into other cell types for tissue repair and regeneration. Although isolated examples of adult cell reprogramming are known, there is no general understanding of how to turn one cell type into another in a controlled manner. Here, using a strategy of re-expressing key developmental regulators in vivo, we identify a specific combination of three transcription factors (Ngn3 (also known as Neurog3) Pdx1 and Mafa) that reprograms differentiated pancreatic exocrine cells in adult mice into cells that closely resemble beta-cells. The induced beta-cells are indistinguishable from endogenous islet beta-cells in size, shape and ultrastructure. They express genes essential for beta-cell function and can ameliorate hyperglycaemia by remodelling local vasculature and secreting insulin. This study provides an example of cellular reprogramming using defined factors in an adult organ and suggests a general paradigm for directing cell reprogramming without reversion to a pluripotent stem cell state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Five stages of evolving beta-cell dysfunction during progression to diabetes.

              This article proposes five stages in the progression of diabetes, each of which is characterized by different changes in beta-cell mass, phenotype, and function. Stage 1 is compensation: insulin secretion increases to maintain normoglycemia in the face of insulin resistance and/or decreasing beta-cell mass. This stage is characterized by maintenance of differentiated function with intact acute glucose-stimulated insulin secretion (GSIS). Stage 2 occurs when glucose levels start to rise, reaching approximately 5.0-6.5 mmol/l; this is a stable state of beta-cell adaptation with loss of beta-cell mass and disruption of function as evidenced by diminished GSIS and beta-cell dedifferentiation. Stage 3 is a transient unstable period of early decompensation in which glucose levels rise relatively rapidly to the frank diabetes of stage 4, which is characterized as stable decompensation with more severe beta-cell dedifferentiation. Finally, stage 5 is characterized by severe decompensation representing a profound reduction in beta-cell mass with progression to ketosis. Movement across stages 1-4 can be in either direction. For example, individuals with treated type 2 diabetes can move from stage 4 to stage 1 or stage 2. For type 1 diabetes, as remission develops, progression from stage 4 to stage 2 is typically found. Delineation of these stages provides insight into the pathophysiology of both progression and remission of diabetes.
                Bookmark

                Author and article information

                Journal
                Ann N Y Acad Sci
                Ann. N. Y. Acad. Sci
                nyas
                Annals of the New York Academy of Sciences
                Blackwell Publishing Ltd
                0077-8923
                1749-6632
                April 2013
                30 January 2013
                : 1281
                : 1
                : 92-105
                Affiliations
                Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School Boston, Massachusetts
                Author notes
                Address for correspondence: Gordon C. Weir, M.D., Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. gordon.weir@ 123456joslin.harvard.edu
                Article
                10.1111/nyas.12031
                3618572
                23363033
                05294742-6faf-4eb0-b081-c400814de0a6
                © 2013 The New York Academy of Sciences

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                Categories
                Original Articles

                Uncategorized
                beta cell,islets,diabetes,neogenesis,insulin secretion
                Uncategorized
                beta cell, islets, diabetes, neogenesis, insulin secretion

                Comments

                Comment on this article