25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seasonal heterogeneity of ocean warming: a mortality sink for ectotherm colonizers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Distribution shifts are a common adaptive response of marine ectotherms to climate change but the pace of redistribution depends on species-specific traits that may promote or hamper expansion to northern habitats. Here we show that recently, the loggerhead turtle ( Caretta caretta) has begun to nest steadily beyond the northern edge of the species’ range in the Mediterranean basin. This range expansion is associated with a significant warming of spring and summer sea surface temperature (SST) that offers a wider thermal window suitable for nesting. However, we found that post-hatchlings departing from this location experience low winter SST that may affect their survival and thus hamper the stabilization of the site by self-recruitment. The inspection of the Intergovernmental Panel on Climate Change model projections and observational data on SST trends shows that, despite the annual warming for this century, winter SST show little or no trends. Therefore, thermal constraints during the early developmental phase may limit the chance of population growth at this location also in the near future, despite increasingly favourable conditions at the nesting sites. Quantifying and understanding the interplay between dispersal and environmental changes at all life stages is critical for predicting ectotherm range expansion with climate warming.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular resolution of marine turtle stock composition in fishery bycatch: a case study in the Mediterranean.

          Based on an extensive sampling regime from both nesting populations and bycatch, frequency analyses of mitochondrial (mt) DNA control region haplotypes in the Mediterranean were used to assess the genetic structure and stock composition of the loggerhead sea turtle, Caretta caretta, in different marine fisheries. The analyses show the following. (i) In drifting longline fisheries working in Mediterranean pelagic habitats 53-55% of turtles caught originated from the Mediterranean stock; (ii) In bottom-trawl fisheries all turtle bycatch is derived from this regional stock; (iii) This regional stock contribution to fishery bycatch suggests that the population size of the Mediterranean loggerhead nesting population is significantly larger than previously thought. This is consistent with a recent holistic estimate based on the discovery of a large rookery in Libya. (iv) Present impact of fishery-related mortality on the Mediterranean nesting population is probably incompatible with its long-term conservation. Sea turtle conservation regulations are urgently needed for the Mediterranean fisheries. (v) The significant divergence of mtDNA haplotype frequencies of the Turkish loggerhead colonies define this nesting population as a particularly important management unit. Large immature and adult stages from this management unit seem to be harvested predominantly by Egyptian fisheries. (vi) Combined with other data, our findings suggest that all the nesting populations in the Mediterranean should be considered as management units sharing immature pelagic habitats throughout the Mediterranean (and possibly the eastern Atlantic), with distinct and more localized benthic feeding habitats in the eastern basin used by large immatures and adults. (vii) Between the strict oceanic pelagic and the benthic stages, immature turtles appear to live through an intermediate neritic stage, in which they switch between pelagic and benthic foods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting the impacts of climate change on a globally distributed species: the case of the loggerhead turtle.

            Marine turtles utilise terrestrial and marine habitats and several aspects of their life history are tied to environmental features that are altering due to rapid climate change. We overview the likely impacts of climate change on the biology of these species, which are likely centred upon the thermal ecology of this taxonomic group. Then, focusing in detail on three decades of research on the loggerhead turtle (Caretta caretta L.), we describe how much progress has been made to date and how future experimental and ecological focus should be directed. Key questions include: what are the current hatchling sex ratios from which to measure future climate-induced changes? What are wild adult sex ratios and how many males are necessary to maintain a fertile and productive population? How will climate change affect turtles in terms of their distribution?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Geographic Patterns of Genetic Variation in a Broadly Distributed Marine Vertebrate: New Insights into Loggerhead Turtle Stock Structure from Expanded Mitochondrial DNA Sequences

              Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                05 April 2016
                2016
                : 6
                : 23983
                Affiliations
                [1 ]Stazione Zoologica Anton Dohrn , Villa Comunale, 80121, Naples, Italy
                [2 ]Dipartimento di Scienze, Università Roma Tre , Viale G. Marconi 446, 00146 Rome, Italy
                [3 ]Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Atmosfera e del Clima , Str. Lecce-Monteroni, 73100, Lecce, Italy
                Author notes
                Article
                srep23983
                10.1038/srep23983
                4820753
                27044321
                052cd7b9-d349-45d8-845f-d81b6f50fbf6
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 October 2015
                : 11 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article