1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patient motion tracking for non‐isocentric and non‐coplanar treatments via fixed frame‐of‐reference 3D camera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          As C‐arm linac radiation therapy evolves toward faster, more efficient delivery, and more conformal dosimetry, treatments with increasingly complex couch motions are emerging. Monitoring the patient motion independently of the couch motion during non‐coplanar, non‐isocentric, or dynamic couch treatments is a key bottleneck to their clinical implementation. The goal of this study is to develop a prototype real‐time monitoring system for unconventional beam trajectories to ensure a safe and accurate treatment delivery.

          Methods

          An in‐house algorithm was developed for tracking using a couch‐mounted three‐dimensional (3D) depth camera. The accuracy of patient motion detection on the couch was tested on a 3D printed phantom created from the body surface contour exported from the treatment planning system. The technique was evaluated against a commercial optical surface monitoring system with known phantom displacements of 3, 5, and 7 mm in lateral, longitudinal, and vertical directions by placing a head phantom on a dynamic platform on the treatment couch. The stability of the monitoring system was evaluated during dynamic couch trajectories, at speeds between 10.6 and 65 cm/min.

          Results

          The proposed monitoring system agreed with the ceiling mounted optical surface monitoring system in longitudinal, lateral, and vertical directions within 0.5 mm. The uncertainty caused by couch vibration increased with couch speed but remained sub‐millimeter for speeds up to 32 cm/min. For couch speeds of 10.6, 32.2, and 65 cm/min, the uncertainty ranges were 0.27– 0.73 mm, 0.15–0.87 mm, and 0.28–1.29 mm, respectively.

          Conclusion

          By mounting a 3D camera in the same frame‐of‐reference as the patient and eliminating dead spots, this proof of concept demonstrates real‐time patient monitoring during couch motion. For treatments with non‐coplanar beams, multiple isocenters, or dynamic couch motion, this provides additional safety without additional radiation dose and avoids some of the complexity and limitations of room mounted systems.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases

            Background Intensity-modulated proton therapy (IMPT), non-coplanar 4π intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) represent the most advanced treatment methods based on heavy ion and X-rays, respectively. Here we compare their performance for prostate cancer treatment. Methods Ten prostate patients were planned using IMPT with robustness optimization, VMAT, and 4π to an initial dose of 54 Gy to a clinical target volume (CTV) that encompassed the prostate and seminal vesicles, then a boost prescription dose of 25.2 Gy to the prostate for a total dose of 79.2 Gy. The IMPT plans utilized two coplanar, oblique scanning beams 10° posterior of the lateral beam positions. Range uncertainties were taken into consideration in the IMPT plans. VMAT plans used two full, coplanar arcs to ensure sufficient PTV coverage. 4π plans were created by inversely selecting and optimizing 30 beams from 1162 candidate non-coplanar beams using a greedy column generation algorithm. CTV doses, bladder and rectum dose volumes (V40, V45, V60, V65, V70, V75, and V80), R100, R50, R10, and CTV homogeneity index (D95/D5) were evaluated. Results Compared to IMPT, 4π resulted in lower anterior rectal wall mean dose as well as lower rectum V40, V45, V60, V65, V70, and V75. Due to the opposing beam arrangement, IMPT resulted in significantly (p < 0.05) greater femoral head doses. However, IMPT plans had significantly lower bladder, rectum, and anterior rectal wall max dose. IMPT doses were also significantly more homogeneous than 4π and VMAT doses. Conclusion Compared to the VMAT and 4π plans, IMPT treatment plans are superior in CTV homogeneity and maximum point organ-at-risk (OAR) doses with the exception of femur heads. IMPT is inferior in rectum and bladder volumes receiving intermediate to high doses, particularly to the 4π plans, but significantly reduced low dose spillage and integral dose, which are correlated to secondary cancer for patients with expected long survival. The dosimetric benefits of 4π plans over VMAT are consistent with the previous publication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study.

              Currently, high-precision delivery in stereotactic radiosurgery (SRS) is achieved via high-precision target localization and rigid patient immobilization. Rigid patient immobilization can result in, however, patient discomfort, which is exacerbated by the long duration of SRS treatments and may induce patient movement. To address this issue, we developed a new SRS technique that is aimed to minimize patient discomfort while maintaining high-precision treatment, based on a less-rigid patient immobilization combined with continuous patient motion monitoring. In this paper, we examine the feasibility of this new technique. An anthropomorphic head phantom is used to check the accuracy of a 3D surface imaging system that provides the monitoring. Volunteers are used to study patient motion inside a new type of head mold that is used for minimal immobilization. Results show that for different couch angles, the difference between the phantom positions recorded by the surface imaging system and by an infrared optical tracking system was within 1 mm in displacements and 1 degrees in rotation. The motion detected by both systems during couch shifts is within 1 mm agreement. The average maximum volunteer head motion in the head mold during the 20 min interval in any direction was 0.7 mm (range: 0.4-1.1 mm). Patient motion due to couch motion was always less than 0.2 mm. We conclude that motion inside the minimally immobilizing head mold is small and can be accurately detected by real-time surface imaging.
                Bookmark

                Author and article information

                Contributors
                amysyu@stanford.edu
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                28 February 2020
                March 2020
                : 21
                : 3 ( doiID: 10.1002/acm2.v21.3 )
                : 162-166
                Affiliations
                [ 1 ] Department of Radiation Oncology Stanford university Palo Alto CA 94304 USA
                Author notes
                [*] [* ] Author to whom correspondence should be addressed. Amy S. Yu

                E‐mail: amysyu@ 123456stanford.edu .

                Article
                ACM212842
                10.1002/acm2.12842
                7075370
                32107845
                057c88d7-0289-4f61-b884-2bb4a786b1c2
                © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 October 2019
                : 03 February 2020
                : 05 February 2020
                Page count
                Figures: 2, Tables: 2, Pages: 5, Words: 3286
                Categories
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                March 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.7 mode:remove_FC converted:16.03.2020

                intrafractional monitoring,non‐coplanar,non‐isocentric,optical surface monitoring

                Comments

                Comment on this article