20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rat Mesentery Angiogenesis Assay

      research-article
      Journal of Visualized Experiments : JoVE
      MyJove Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adult rat mesentery window angiogenesis assay is biologically appropriate and is exceptionally well suited to the study of sprouting angiogenesis in vivo [see review papers], which is the dominating form of angiogenesis in human tumors and non-tumor tissues, as discussed in invited review papers 1,2. Angiogenesis induced in the membranous mesenteric parts by intraperitoneal (i.p.) injection of a pro-angiogenic factor can be modulated by subcutaneous (s.c.), intravenous (i.v.) or oral (p.o.) treatment with modifying agents of choice. Each membranous part of the mesentery is translucent and framed by fatty tissue, giving it a window-like appearance.

          The assay has the following advantageous features: (i) the test tissue is natively vascularized, albeit sparsely, and since it is extremely thin, the microvessel network is virtually two-dimensional, which allows the entire network to be assessed microscopically in situ; (ii) in adult rats the test tissue lacks significant physiologic angiogenesis, which characterizes most normal adult mammalian tissues; the degree of native vascularization is, however, correlated with age, as discussed in 1; (iii) the negligible level of trauma-induced angiogenesis ensures high sensitivity; (iv) the assay replicates the clinical situation, as the angiogenesis-modulating test drugs are administered systemically and the responses observed reflect the net effect of all the metabolic, cellular, and molecular alterations induced by the treatment; (v) the assay allows assessments of objective, quantitative, unbiased variables of microvascular spatial extension, density, and network pattern formation, as well as of capillary sprouting, thereby enabling robust statistical analyses of the dose-effect and molecular structure-activity relationships; and (vi) the assay reveals with high sensitivity the toxic or harmful effects of treatments in terms of decreased rate of physiologic body-weight gain, as adult rats grow robustly.

          Mast-cell-mediated angiogenesis was first demonstrated using this assay 3,4. The model demonstrates a high level of discrimination regarding dosage-effect relationships and the measured effects of systemically administered chemically or functionally closely related drugs and proteins, including: (i) low-dosage, metronomically administered standard chemotherapeutics that yield diverse, drug-specific effects ( i.e., angiogenesis-suppressive, neutral or angiogenesis-stimulating activities 5); (ii) natural iron-unsaturated human lactoferrin, which stimulates VEGF-A-mediated angiogenesis 6, and natural iron-unsaturated bovine lactoferrin, which inhibits VEGF-A-mediated angiogenesis 7; and (iii) low-molecular-weight heparin fractions produced by various means 8,9. Moreover, the assay is highly suited to studies of the combined effects on angiogenesis of agents that are administered systemically in a concurrent or sequential fashion.

          The idea of making this video originated from the late Dr. Judah Folkman when he visited our laboratory and witnessed the methodology being demonstrated.

          Review papers (invited) discussing and appraising the assay

          Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 10, 588-612 (2006).

          Norrby, K. Drug testing with angiogenesis models. Expert Opin. Drug. Discov. 3, 533-549 (2008).

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Mast cells and angiogenesis.

          Angiogenesis is tightly regulated by pro- and anti-angiogenic factors. Secreting mast cells are able to induce and enhance angiogenesis via multiple in part interacting pathways. They include mast cell-derived (i) potent pro-angiogenic factors such as VEGF, bFGF, TGF-beta, TNF-alpha and IL-8, (ii) proteinases and heparin, that release heparin-binding pro-angiogenic factors lodged on cell surfaces and in the extracellular matrix (ECM), (iii) histamine, VEGF, and certain lipid-derived mediators that induce microvascular hyperpermeability having pro-angiogenic effects, (iv) chemotactic recruitment of monocytes/macrophages and lymphocytes that are able to contribute with angiogenesis-modulating molecules, (v) activation of platelets that release pro-angiogenic factors, (vi) activation of neighboring stationary non-mast cells, which secrete pro-angiogenic factors, ECM-degrading proteinases and stem cell factor which attracts, mitogenically stimulates and activates mast cells, (vii) auto- and paracrine stimulation of mast cells by stem cell factor, (viii) recruitment of mast cells by pro-angiogenic factors such as VEGF, bFGF and TGF-beta. As a result of ECM-degradation and changes in the microenvironment following initial mast cell secretion, the mast cell populations may change significantly in number, phenotype and function. In tumor models, mast cells have been shown to play a decisive role in inducing the angiogenic switch which precedes malignant transformation. There is, moreover, strong evidence that mast cells significantly influence angiogenesis and thus growth and progression in human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo models of angiogenesis

            K Norrby (2006)
            The process of building new blood vessels (angiogenesis) and controlling the propagation of blood vessels (anti-angiogenesis) are fundamental to human health, as they play key roles in wound healing and tissue growth. More than 500 million people may stand to benefit from anti- or pro-angiogenic treatments in the coming decades [National Cancer Institute (USA), Cancer Bulltetin, volume 3, no. 9, 2006]. The use of animal models to assay angiogenesis is crucial to the search for therapeutic agents that inhibit angiogenesis in the clinical setting. Examples of persons that would benefit from these therapies are cancer patients, as cancer growth and spread is angiogenesis-dependent, and patients with aberrant angiogenesis in the eye, which may lead to blindness or defective sight. Recently, anti-angiogenesis therapies have been introduced successfully in the clinic, representing a turning point in tumor therapy and the treatment of macular degeneration and heralding a new era for the treatment of several commonly occurring angiogenesis-related diseases. On the other hand, pro-angiogenic therapies that promote compensatory angiogenesis in hypoxic tissues, such as those subjected to ischemia in myocardial or cerebral hypoxia due to occluding lesions in the coronary or cerebral arteries, respectively, and in cases of poor wound healing, are also being developed. In this review, the current major and newly introduced preclinical angiogenesis assays are described and discussed in terms of their specific advantages and disadvantages from the biological, technical, economical and ethical perspectives. These assays include the corneal micropocket, chick chorioallantoic membrane, rodent mesentery, subcutaneous (s.c.) sponge/matrix/alginate microbead, s.c. Matrigel plug, s.c. disc, and s.c. directed in vivo angiogenesis assays, as well as, the zebrafish system and several additional assays. A note on quantitative techniques for assessing angiogenesis in patients is also included. The currently utilized preclinical assays are not equivalent in terms of efficacy or relevance to human disease. Some of these assays have significance for screening, while others are used primarily in studies of dosage-effects, molecular structure activities, and the combined effects of two or more agents on angiogenesis. When invited to write this review, I was asked to describe in some detail the rodent mesenteric-window angiogenesis assay, which has not received extensive coverage in previous reviews.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-molecular-weight heparins and angiogenesis.

              The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exert anti-angiogenic effects in any type of tissue in vivo. These effects are fragment-mass-specific and angiogenesis-type-specific. Data on the effect of various LMWHs and UFH on endothelial cell capillary tube formation and proliferation in vitro are also presented. We hope that this paper will stimulate and facilitate future research designed to elucidate whether the anti-angiogenic or anti-tumor effects of commercial LMWHs in their own right are agent specific and whether anti-angiogenic properties increase the anti-tumor properties of the LMWHs in the clinic.
                Bookmark

                Author and article information

                Journal
                J Vis Exp
                JoVE
                Journal of Visualized Experiments : JoVE
                MyJove Corporation
                1940-087X
                2011
                18 June 2011
                18 June 2011
                : 52
                : 3078
                Affiliations
                Department of Pathology, Institute of Biomedicine, University of Gothenburg
                Author notes

                Correspondence to: Klas C. Norrby at klas.norrby@ 123456pathology.gu.se

                Article
                3078
                10.3791/3078
                3121245
                21712799
                05ad52d5-5f2b-46db-b5b3-8e4cb9b1dc48
                Copyright © 2011, Journal of Visualized Experiments

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Physiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article