8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of microfluidic biosensor efficiency by means of fluid flow engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Binding reaction kinetics of analyte-ligand at the level of a sensitive membrane into a microchannel of a biosensor has been limited by the formation of the boundary diffusion layer. Therefore, the response time increases and affects the overall performance of a biosensor. In the present work, we develop an approach to engineer fluid streams into a complex configuration in order to improve the binding efficiency. We investigate numerically the flow deformations around a parallelepiped with square cross-section inside the microfluidic channel and exploit these deformations to simulate the analyte transport to the sensitive membrane and enhance both association and dissociation processes. The effect of several parameters on the binding reaction is provided such as: the obstacle location from the inlet of the microchannel, the average flow velocity, and the inlet analyte concentration. The optimal position of the obstacle is determined. An appropriate choice of the inlet flow velocity and inlet analyte concentration may reduce significantly the response time.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Microfluidic platforms for lab-on-a-chip applications.

          We review microfluidic platforms that enable the miniaturization, integration and automation of biochemical assays. Nowadays nearly an unmanageable variety of alternative approaches exists that can do this in principle. Here we focus on those kinds of platforms only that allow performance of a set of microfluidic functions--defined as microfluidic unit operations-which can be easily combined within a well defined and consistent fabrication technology to implement application specific biochemical assays in an easy, flexible and ideally monolithically way. The microfluidic platforms discussed in the following are capillary test strips, also known as lateral flow assays, the "microfluidic large scale integration" approach, centrifugal microfluidics, the electrokinetic platform, pressure driven droplet based microfluidics, electrowetting based microfluidics, SAW driven microfluidics and, last but not least, "free scalable non-contact dispensing". The microfluidic unit operations discussed within those platforms are fluid transport, metering, mixing, switching, incubation, separation, droplet formation, droplet splitting, nL and pL dispensing, and detection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microfluidics for medical diagnostics and biosensors

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX).

              The systematic evolution of ligands by exponential enrichment (SELEX) is an experimental procedure that allows screening of given molecular targets by desired binding affinities from an initial random pool of oligonucleotides and oligomers. The final products of SELEX are usually referred as aptamers, which are recognized as promising molecules for a variety of biomedical applications. However, SELEX is an iterative process requiring multiple rounds of extraction and amplification that demands significant time and labor. Therefore, this study presents a novel, automatic, miniature SELEX platform. As a demonstration, the rapid screening of C-reactive protein (CRP) aptamers was performed. By utilizing microfluidic technologies and magnetic beads conjugated with CRP, aptamers with a high affinity to CRP were extracted from a random single-strand deoxyribonucleic acid (ssDNA) pool. These aptamers were further amplified by an on-chip polymerase chain reaction (PCR) process. After five consecutive extraction and amplification cycles, a specific aptamer with the highest affinity was screened automatically. The screened aptamers were used as a recognition molecule for the detection of CRP. The developed microsystem demonstrated fast screening of CRP aptamers and can be used as a powerful tool to select analyte-specific aptamers for biomedical applications. (c) 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                m.selmi@mu.edu.sa
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 July 2017
                18 July 2017
                2017
                : 7
                : 5721
                Affiliations
                [1 ]ISNI 0000 0004 0593 5040, GRID grid.411838.7, Laboratory of Electronics and Microelectronics, Faculty of Science of Monastir, , University of Monastir, ; Environment Boulevard, Monastir, 5019 Tunisia
                [2 ]GRID grid.449051.d, Department of Radiological Sciences and Medical Imaging, College of Applied Medical Sciences, , Majmaah University, ; 11952 AlMajmaah, Saudi Arabia
                [3 ]GRID grid.449051.d, Department of Physics, College of Science AlZulfi, , Majmaah University, ; 11932 AlZulfi, Saudi Arabia
                Article
                6204
                10.1038/s41598-017-06204-0
                5515918
                28720856
                05af26d2-d791-4091-b826-db1d4e7ad1d3
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 March 2017
                : 8 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article