19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remodeling the Integration of Lipid Metabolism Between Liver and Adipose Tissue by Dietary Methionine Restriction in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dietary methionine restriction (MR) produces an integrated series of biochemical and physiological responses that improve biomarkers of metabolic health, limit fat accretion, and enhance insulin sensitivity. Using transcriptional profiling to guide tissue-specific evaluations of molecular responses to MR, we report that liver and adipose tissue are the primary targets of a transcriptional program that remodeled lipid metabolism in each tissue. The MR diet produced a coordinated downregulation of lipogenic genes in the liver, resulting in a corresponding reduction in the capacity of the liver to synthesize and export lipid. In contrast, the transcriptional response in white adipose tissue (WAT) involved a depot-specific induction of lipogenic and oxidative genes and a commensurate increase in capacity to synthesize and oxidize fatty acids. These responses were accompanied by a significant change in adipocyte morphology, with the MR diet reducing cell size and increasing mitochondrial density across all depots. The coordinated transcriptional remodeling of lipid metabolism between liver and WAT by dietary MR produced an overall reduction in circulating and tissue lipids and provides a potential mechanism for the increase in metabolic flexibility and enhanced insulin sensitivity produced by the diet.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways

          OBJECTIVE We have previously shown that serum insulin levels decrease threefold and blood glucose levels remain normal in mice fed a leucine-deficient diet, suggesting increased insulin sensitivity. The goal of the current study is to investigate this possibility and elucidate the underlying cellular mechanisms. RESEARCH DESIGN AND METHODS Changes in metabolic parameters and expression of genes and proteins involved in regulation of insulin sensitivity were analyzed in mice, human HepG2 cells, and mouse primary hepatocytes under leucine deprivation. RESULTS We show that leucine deprivation improves hepatic insulin sensitivity by sequentially activating general control nonderepressible (GCN)2 and decreasing mammalian target of rapamycin/S6K1 signaling. In addition, we show that activation of AMP-activated protein kinase also contributes to leucine deprivation–increased hepatic insulin sensitivity. Finally, we show that leucine deprivation improves insulin sensitivity under insulin-resistant conditions. CONCLUSIONS This study describes mechanisms underlying increased hepatic insulin sensitivity under leucine deprivation. Furthermore, we demonstrate a novel function for GCN2 in the regulation of insulin sensitivity. These observations provide a rationale for short-term dietary restriction of leucine for the treatment of insulin resistance and associated metabolic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid.

            Metabolic adaptation is required to cope with episodes of protein deprivation and malnutrition. GCN2 eIF2alpha kinase, a sensor of amino acid deficiency, plays a key role in yeast and mammals in modulating amino acid metabolism as part of adaptation to nutrient deprivation. The role of GCN2 in adaptation to long-term amino acid deprivation in mammals, however, is poorly understood. We found that expression of lipogenic genes and the activity of fatty acid synthase (FAS) in the liver are repressed and lipid stores in adipose tissue are mobilized in wild-type mice upon leucine deprivation. In contrast, GCN2-deficient mice developed liver steatosis and exhibited reduced lipid mobilization. Liver steatosis in Gcn2(-/-) mice was found to be caused by unrepressed expression of lipogenic genes, including Srebp-1c and Fas. Thus, our study identifies a novel function of GCN2 in regulating lipid metabolism during leucine deprivation in addition to regulating amino acid metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo.

              A survey of genes differentially expressed in the brown adipose tissue (BAT) of mice exposed to a range of environmental temperatures was carried out to identify novel genes and pathways associated with the transition of this tissue toward an amplified thermogenic state. The current report focuses on an analysis of the expression patterns of 50 metabolic genes in BAT under control conditions (22 degrees C), cold exposure (4 degrees C, 1 to 48 h), warm acclimation (33 degrees C, 3 wk), or food restriction/meal feeding (animals fed the same amount as warm mice). In general, expression of genes encoding proteins involving glucose uptake and catabolism was significantly elevated in the BAT of cold-exposed mice. The levels of mRNAs encoding proteins critical to de novo lipogenesis were also increased. Gene expression for enzymes associated with procurement and combustion of long chain fatty acids (LCFAs) was increased in the cold. Thus, a model was proposed in which coordinated activation of glucose uptake, fatty acid synthesis, and fatty acid combustion occurs as part of the adaptive thermogenic processes in BAT. Confirmation emerged from in vivo assessments of cold-induced changes in BAT 2-deoxyglucose uptake (increased 2.7-fold), BAT lipogenesis (2.8-fold higher), and incorporation of LCFA carboxyl-carbon into BAT water-soluble metabolites (elevated approximately twofold). It is proposed that temperature-sensitive regulation of distinct intracellular malonyl-CoA pool sizes plays an important role in driving this unique metabolic profile via maintenance of the lipogenic pool but diminution of the carnitine palmitoyltransferase 1 inhibitory pool under cold conditions.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                October 2013
                17 September 2013
                : 62
                : 10
                : 3362-3372
                Affiliations
                [1] 1Laboratories of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana
                [2] 2Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
                [3] 3Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
                [4] 4Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana.
                Author notes
                Corresponding author: Thomas W. Gettys, gettystw@ 123456pbrc.edu .
                Article
                0501
                10.2337/db13-0501
                3781441
                23801581
                05d051dc-bdf6-488c-896a-cbafaf3156b6
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 27 March 2013
                : 19 June 2013
                Page count
                Pages: 11
                Categories
                Original Research
                Metabolism

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article